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Executive Summary 

The NSW Natural Resources Commission (NRC) engaged The Mullion Group to deliver a remote 
sensing feasibility study in relation to the Private Native Forestry Monitoring, Evaluation and 
Reporting framework (PNF MER), as specified in the PNF Codes of Practice (the codes). The study 
objectives were to: 

• assess the capability of remote sensing technologies to monitor PNF code conditions and/or 
biophysical outcomes (noting that not all PNF code conditions or outcomes may be suitable 
to monitor remotely) 

• consider the feasibility of each remote sensing technology, including cost effectiveness, 
frequency of return sampling, usefulness of data generated, and whole-of-life-cycle 
considerations such as data storage, processing and analysis 

• propose indicators to monitor PNF code conditions and/or biophysical outcomes under the 
PNF codes 

• analyse readily available remote sensing data to demonstrate what the data can explain in 
terms of outcomes and/or conditions. 

This report addresses the final objective and builds on the indicators proposed in the second report. 
For background information, readers should consider reading the first report, which addressed the 
first two objectives above and is available on the NSW NRC’s website1. 

In this report, worked examples and analysis of readily available remote sensing data are presented 
for several potential remote sensing ‘indicators’, as identified and workshopped in earlier stages of 
this feasibility study. At the site scale, these include indicators of structural complexity, an analysis of 
canopy gaps and area harvested, modelled volume and basal area estimates and examples based on 
terrain information (slopes, riparian areas, tracks and roads). These indicators are based on high 
resolution airborne laser scanning (ALS) data, with some field-based data provided by Forestry 
Corporation of NSW for the modelling work. At a bioregional scale, an assessment of forest 
connectivity is presented, using the National Forest and Sparse Woody Vegetation data, along with 
intersections with existing NSW Department of Climate Change, Energy, the Environment and Water 
(DCCEEW) data products, including the Statewide Landcover and Tree Study (SLATS) and the Fire 
Extent and Severity Mapping (FESM) products. The Biodiversity Indicator Program is also discussed, 
along with a summary of using satellite time-series to explore drought impacts. 

In addition to the worked examples, further potential indicators are addressed via a summary of 
existing literature (provided as Appendix 1). These include vertical connectivity, dead tree crowns, 
compositional complexity and structural recovery. These indicators are currently considered low 
feasibility, due to high costs and technical and data limitations. However, they may warrant 
consideration in future. A comprehensive literature review on the application of LiDAR data for 
forest structure monitoring is also provided as Appendix 2. 

The analysis and worked examples presented in this report offer a starting point for the potential 
remote sensing indicators and what they may be able to tell us about PNF areas at the site scale and 
within the broader landscape. However, these results should be considered preliminary, prior to the 
development of a comprehensive PNF MER monitoring and sampling program. The overall design of 
the monitoring and sampling program to support the PNF MER is not part of this remote sensing 
feasibility study. It is recommended that such a design include three tiers of observation: ground 
based, high-resolution aerial samples (ALS and imagery) and wall-to-wall moderate resolution 
satellite imagery, to be collected at regular and defined frequencies within a statistically defendable 

 
1 Hislop, S. & Stone, C. (2023) Remote sensing of NSW private native forests – options and feasibility. 
https://www.nrc.nsw.gov.au/publications-current  

https://www.nrc.nsw.gov.au/publications-current
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sampling strategy. This approach would facilitate the application of the indicators presented in this 
report. 

1. Introduction 

This report is the third stage in the remote sensing feasibility study and builds on the work outlined 
in the previous two reports. The first report presented a comprehensive review of remote sensing 
technologies and capabilities within the context of a Private Native Forestry Monitoring, Evaluation 
and Reporting Framework (PNF MER)2. The second report proposed potential remote sensing 
indicators at both site and bioregional scales, with a focus on what can realistically be achieved with 
current data and technology solutions within a moderate budget. 

This report presents worked examples of a selection of the proposed indicators using existing 
datasets (where available). Where existing data was not available or the feasibility of the indicator 
was deemed low due to technical challenges, background information is provided, guided by existing 
literature (Appendix 1). 

The potential remote sensing indicators addressed in this report are summarised in Table 1. 

Table 1. Proposed remote sensing indicators from Report 2 and how they are addressed in this 
report. 

Proposed Indicator 

[related PNF condition(s)] 

Feasibility (from 

Report 2)3 

How it is addressed in this report 

Structural complexity 

[regeneration, protection of 
habitat and biodiversity] 

High Section 2.1. Site scale worked example based 
on ALS samples 

Structural recovery 

[regeneration] 

Medium Partly addressed in Section 4.4. Drought and 
fire disturbance and recovery with satellite 
time series. Discussed further in Appendix 1.4. 

 

Canopy gaps 

[regeneration, canopy openings 
and adjacency limits] 

High Section 2.3. Site scale worked example based 
on ALS samples 

Spatial connectivity 

[regeneration, protection of 
habitat and biodiversity] 

High Section 4.1. Bioregional scale worked example 
based on forest cover data 

 
2 Natural Resources Commission (2023) Approved Private Native Forestry Monitoring, Evaluation and Reporting 
Framework. 
3 Feasibility was based on technical difficulty, ability to extract meaningful information and potential costs, where high 
represents greatest likelihood of success. 

https://www.nrc.nsw.gov.au/PNF%20MER%20-%20Approved%20framework%20-%20November%202023.pdf?downloadable=1
https://www.nrc.nsw.gov.au/PNF%20MER%20-%20Approved%20framework%20-%20November%202023.pdf?downloadable=1
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Proposed Indicator 

[related PNF condition(s)] 

Feasibility (from 

Report 2)3 

How it is addressed in this report 

Vertical connectivity 

[regeneration, protection of 
habitat and biodiversity] 

Medium Appendix 1.1. Background only 

Dead tree crowns (%) 

[habitat trees – dead standing 
trees] 

Low Appendix 1.2. Background only 

Area harvested 

[area harvested reporting 
requirement] 

Medium Section 2.2. Results based on published paper 
(Hislop et al. 2024) 

Basal area 

[minimum stand basal area] 

Low Section 2.4. Worked example based on FCNSW 
data over State forests 

Volume harvested 

[volume harvested reporting 
requirement] 

Medium Section 2.4. Worked example based on FCNSW 
data over State forests 

Compositional complexity 

[regeneration, protection of 
habitat and biodiversity] 

Low Appendix 1.3. Background only 

Riparian exclusions (% 
maintained) 

[riparian exclusions] 

Medium Section 3.1. Individual site scale example based 
on ALS to demonstrate the method 

Slope exclusions (% maintained) 

[slope exclusions] 

Medium Section 3.2. Regional scale example based on 
ALS derived DTM. (note this indicator was not 
included in the original version of Report 2) 

Tracks intersecting drainage lines 
(count/density) 

[roads, tracks, crossings] 

 

Low Section 3.3. Brief discussion of techniques, 
challenges and potential solutions. 

Soil erosion (minor) 

[minimise soil 
disturbance/movement, 
protection of dispersible or 
erodible soils] 

Low Discussed briefly in Section 3.3. Tracks and 
roads 

Landscape heterogeneity Low Not addressed in this report 
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Proposed Indicator 

[related PNF condition(s)] 

Feasibility (from 

Report 2)3 

How it is addressed in this report 

Disturbance (timing and 
magnitude) 

High Sections 4.2, 4.3 and 4.4. Explored through the 
intersection of PNF areas with FESM and SLATS 
data and outputs from Hislop et al. (2023) 

Spectral recovery Medium Partly addressed in Section 4.4. Drought and 
fire disturbance and recovery with satellite 
time series. Discussed further in Appendix 1.4. 

Mass soil movement Low Not addressed in this report. Not considered 
relevant for PNF monitoring 

Fire severity (& recovery) 
modelling (e.g., FESM) 

High Section 4.3. Intersection of FESM data with PNF 
areas (severity only) 

Statewide Landcover and Tree 
Study (SLATS) 

High Section 4.2. Intersection of SLATS data with PNF 
areas 

Biodiversity Indicator Program 
(BIP) 

High Discussed in Section 4.1. Spatial connectivity 

The terms bioregional and site are used here to refer to two distinct spatial scales, as per the 
language used in the PNF codes. We interpret site scale to essentially relate to a PNF plan area for an 
individual property, noting there are a large range of property sizes. Bioregional scale we interpret 
to refer to large areas and interchangeable with terms such as landscape or regional. The IBRA 
bioregions are one such classification used in Australia, which could be used as both reporting units 
and sampling strata (not used here). 

The proposed indicators at the site scale rely heavily on airborne laser scanning (ALS), which, under 
the funding assumptions applied in this study and current technological constraints, will need to be 
collected as samples (e.g., transects). Samples collected within a robust sampling framework (e.g., a 
design-based stratified sample) would satisfy monitoring requirements, being the basis of traditional 
plot-based forest monitoring used throughout the world for decades. Note that in future, there may 
be opportunities to use new technologies such as Geiger-mode LiDAR which can collect data at 
higher altitudes and thus cover much greater areas. With traditional ALS, as with satellite imagery, 
there is typically a trade-off between spatial resolution and coverage extent. 

Indicators at bioregional scales lend themselves more to using moderate resolution satellite 
imagery, which offers wall-to-wall coverage at regular time steps. Note that moderate resolution 
imagery can also provide accurate estimates when used in a sampling framework rather than wall-
to-wall, which would significantly reduce storage and processing times and costs. Bioregional 
indicators may not have the required precision for many site scale assessments. However, they can 
be used to make broad comparisons across tenures and to compare areas with PNF plans to the rest 
of the private forest estate. While these indicators can, as demonstrated later in this report, be 
intersected with PNF plan areas to create local summary statistics, an understanding of the spatial 
limitations of each product is essential before doing so. It is possible for a remote sensing product to 
produce broadly accurate results at a landscape scale, while at the same time, lack the precision to 
be reliable at a local scale. 
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2. Remote sensing LiDAR indicators 

In this section, worked examples of several of the proposed remote sensing forest structure 
indicators are presented, using a format of introduction, methods, results and discussion for each. 
These indicators principally use LiDAR data collected from aircraft (airborne laser scanning or ALS). 
Note that the primary purpose of these examples is to demonstrate the processing steps required 
using existing data. Although we have attempted to relate these to PNF, results from the analysis 
should be considered preliminary and have not been validated. 

2.1. Structural complexity 

Introduction 

Forest structural complexity (or diversity) is considered important for habitat and biodiversity. 
Therefore, maintaining or protecting structural complexity may be an objective in sustainable forest 
management. LiDAR technology allows for an accurate and comprehensive representation of forest 
structure. LiDAR can be collected from the ground (e.g., terrestrial/mobile laser scanning; TLS, MLS), 
from aircraft (ALS) or satellites (e.g., GEDI). Each platform has its pros and cons – generally there is a 
trade-off between detail and spatial coverage. In this indicator, we focus on ALS from a fixed wing 
aircraft (flying height ~1000m), with point densities in the range of 30 p/m2. 

In the example here we demonstrate the use of airborne LiDAR-derived height measures, 
specifically: top height, mean height, canopy cover, skewness, standard deviation and the coefficient 
of variation. While there are many more complex LiDAR-derived structural metrics, the suite chosen 
here are simple metrics that have proven useful elsewhere in representing forest structure and 
serve to demonstrate the required processing steps. These six metrics should not be assumed to 
represent all elements of forest structure, which is a complex topic with many unknowns. 

In addition, relating these metrics to on-ground canopy structure and management practices 
requires additional location specific interpretation. Haywood & Stone (2011a), for example, 
interpreted that positive skewness values were associated with sparse canopies and negative values 
with closed canopies, when using ALS data to estimate structural attributes of mountain ash 
(Eucalyptus regnans) forests in Victoria. Further background information, including a discussion on 
more complex metrics, is available in Appendix 2. 

Methods 

LiDAR height metrics are based on the vertical distribution of points in a defined spatial area. Figure 
1 shows an example LiDAR point cloud for a ‘plot’ and the corresponding histogram of heights (i.e., 
the number of points in each height bin). From this histogram (vertical profile), summary statistics 
can be extracted, which we refer to as LiDAR metrics. For example: top height, mean height, 
standard deviation, canopy cover (i.e., the proportion of points above a height threshold). 
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To create a 2-dimensional surface (map) of a particular LiDAR metric, a grid of a defined pixel size 
(e.g., 30m) is placed over the point cloud and the vertical profile of points in each pixel is used to 
compute the metric of interest (Figure 2). 

In this indicator, LiDAR metrics representing height (95th percentile, average), vertical variation 
(standard deviation, skewness) and canopy cover were calculated using only the first returns from 

the normalized point clouds from ALS data, using a grid size of 30  30 m. In addition, the coefficient 

of variation (CV) was calculated from the average height and standard deviation layers (𝐶𝑉 =  
𝜎

𝜇
). 

 

Figure 1. Example of a LiDAR point cloud over a plot (A) and the resulting distribution of 
height values (B), with the 50th and 95th percentiles shown in red. 

 

Figure 2. Example of a LiDAR metric (p95) calculated from the height distribution of points in 
each grid cell (pixel) across a LiDAR extent. 
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The derived LiDAR metrics in themselves do not produce insights without performing additional 
analysis in line with specific monitoring questions. For example, we may wish to look at whether 
structure is any different in areas where harvesting is permitted compared with non-harvesting 
areas. Alternatively, if multi-date LiDAR exists, we can compare the two dates in time. 

Here, we used the multi-date NSW Department of Primary Industries (DPI) PNF R&D program ALS to 
compare derived LiDAR metrics both temporally (2020 to 2021) and spatially (PNF areas to non PNF 
areas of forest from the ALS spill-over areas), as indicated in Figure 3. The entire workflow for the 
processing and analysis is shown in Figure 4. 

 

The DPI PNF R&D program ALS consists of LiDAR samples (transects) collected over 253 properties 
with live PNF plans (as of March 2020) in the NSW northeast (Figure 5). Two acquisitions covering 
the same areas were collected in April 2020 and April 2021 (i.e., one-year apart).  

 

Figure 3. (A) Areas of overlapping ALS capture from 2020 and 2021, (B) Areas of forest in 
either 2020 or 2021 according to the ALS data (green) and (C) Areas of forest inside PNF plan 
areas (blue) and outside (green). Grey lines indicate PNF plan area boundaries. 

 

Figure 4. Structural complexity processing and analysis workflow. 
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The raster layers for each of the LiDAR metrics were intersected with the forest mask and PNF plan 
areas to create four different categories for comparison: PNF 2020, PNF 2021, Not PNF 2020 and Not 
PNF 2021. The forest mask used here was computed from the LiDAR-derived top-height and cover 
metrics using thresholds of above 2m in height and 20% canopy cover, as per the Australian 
definition of forest. To enable the same areas to be compared temporally, a forest layer from both 
2020 and 2021 was computed and if a pixel was forest in either of these years it was considered 
forest. Pixel values for each category were then extracted and summarised. All processing steps 
were performed in R, using the lidR, sf and terra packages. 

Results & discussion 

Figure 6 shows an example of how two structural metrics (average height and skewness) change 
following selective harvesting. In this example, there is a clear decrease in average height and an 
increase in the skewness, which means that there are more LiDAR returns in the lower vegetation 
strata (i.e., the upper canopy is sparser). This agrees with previous findings (e.g., Haywood & Stone 
2011a). 

 

Figure 5. Location of LiDAR samples collected under the PNF R&D program (Hislop et al. 2024). 
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Figure 6. Example of how two structural metrics change following harvesting. The CHM from 
2020 is shown for reference (A), panel (B) shows the canopy lost between 2020 and 2021, (C) 
the average height in 2020, (D) the average height in 2021, (E) the skewness in 2020 and (F) the 
skewness in 2021. 
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Figure 7. Boxplots of all pixel values in the various categories for each of the structural 
metrics. 
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Results from each metric are summarised across the entire region in Table 2 and Figure 7. The 
results indicate that, in general, the non-PNF areas have a slightly greater range in values across all 
metrics compared with the PNF areas. There appears to be a greater variation between non-PNF and 
PNF areas (spatial) than between 2020 and 2021 (temporal). It is also notable that the top height is 
around 2m higher in PNF areas compared to surrounding non-PNF areas. The areas of forest outside 
of PNF areas may be in National Parks, State Forests or parts of private properties without active 
PNF plans. The results here may indicate that forests inside the PNF plan areas are perhaps of higher 
quality, with slightly higher tree heights and canopy cover percentage (on-ground observations 
would be required to confirm this). The skewness is also slightly negative, which means the point-
cloud has more points in the upper canopy. Note that only the first returns were used to calculate 
the different metrics, so the denser the canopy the more biased towards the top of the canopy the 
point-cloud is. Although using all returns would contain more points in the mid and lower vegetation 
strata, in order to produce meaningful results using all points, an appropriate height cut-off value 
needs to be used. Otherwise, the ground and surface vegetation returns tend to dominate the 
height distributions. It would also be possible to use a range of different height thresholds to create 
multiple versions of each metric, which could be tailored towards habitat requirements for different 
fauna. 

Table 2. Median values for each metric and category. 

 Median values 

Metric Not PNF 2020 Not PNF 2021 PNF 2020 PNF 2021 

Top height (p95) 25.91 25.75 28.11 27.88 

Average height 12.57 12.03 14.81 14.10 

Cover 74.49 72.14 79.99 77.33 

Standard deviation 8.54 8.59 9.24 9.31 

Coefficient of variation 0.73 0.77 0.65 0.69 

Skewness -0.06 0.03 -0.26 -0.16 

The workflow presented here demonstrates how LiDAR structural metrics can be produced, 
analysed and summarised to produce insights across a large region (northeast NSW). Further 
location specific interpretation would be required to relate metric values to on-ground structure, 
vegetation types and management actions. For example, in general, the metric standard deviation 
tends to be smaller in more uniform or single-storey forest stands compared to stands with a 
complex, multistorey structure, while sparser canopies may show positive skewness and a higher 
coefficient of variation.  

Note also that here we made a general assumption that the ALS samples are representative of the 
region as a whole. However, the samples were collected in a stratified random sampling framework 
which was biased towards recently approved PNF plans. Therefore, for statistically defendable 
estimates, further work to create stratum level estimates would be required. 

An alternative use for LiDAR metrics is to use them in modelling applications, either as training data 
for satellite-based models to create wall-to-wall maps or as covariates in models of field measured 
variables (discussed in Section 2.4). Therefore, these metrics may be more useful to be thought of as 
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interim products which can provide valuable inputs to other models and applications, including 
habitat modelling scenarios. 

Key takeaways 

ALS derived LiDAR metrics offer a means to characterise and summarise forest structure across 
large areas. The metrics presented here have been shown elsewhere to represent different 
aspects of forest structure and its response to disturbances. Together, they describe the basic 
forest structure of a site. 

It is not possible, however, to say ‘this value is good, this value is bad’ because values depend on 
forest type, region, etc. All we can say without further investigation and interpretation is ‘this area 
is different to this area, or this area is different now to what it was previously’.  

Opportunities for further work 

The ALS derived metrics could be intersected with other spatial layers (e.g., bioregions, tenure, 
forest type, etc.) to increase understanding of their behaviour in different environments. 

More complex metrics may offer a more complete picture of forest structure (see Appendix 2). 

Further work is required to relate metrics to on-ground information of importance. 

2.2. Area harvested 

Introduction 

The area of forest impacted by harvesting has been the focus of many research studies worldwide. 
Many of these have used satellite time-series (particularly Landsat) to attempt to automatically 
detect harvesting events. Most satellite-based techniques have demonstrated reasonable 
capabilities with respect to detecting clear-fell events. However, the abilities of these methods 
diminish rapidly with detecting more subtle events such as selective harvesting. Hislop et al. (2024) 
assessed the sensitivities of Landsat and Sentinel-2 to PNF harvesting events in northern NSW and 
found individual events were only visually apparent in a Sentinel-2 monthly time-series around half 
of the time. In a Landsat seasonal time-series, it was closer to a quarter. It is likely that automated 
approaches would fare even worse than the visual assessment. Harvesting events may be more 
apparent in commercial high-resolution satellite imagery (e.g., Planet Skysat). However, high-
resolution imagery does not lend itself to automated time-series approaches in the same way as 
Landsat/Sentinel-2 does currently (and has costs involved). This is due to radiometric and 
geolocation inconsistencies through time, along with several practical limitations (e.g., data access, 
data volumes, temporal frequency). 

An alternative approach using multi-date ALS was developed by DPI Forest Science as part of the DPI 
R&D program and is documented in Hislop et al. (2024). These techniques and results are 
summarised here. 

Methods 

The workflow developed to estimate the extent of harvesting across a one-year period from 
multitemporal ALS is outlined in Figure 8. The methods are principally based on using the difference 
between two canopy height models (CHMs) to identify tree canopy loss (Figure 9). To remove noise, 
the difference layer was filtered to only include patch sizes greater than 50 m2 and height 
differences greater than 10 m. With this tree-loss raster, a rolling average of density at a 1-ha scale 
was created. To distinguish harvesting from ‘natural’ loss (e.g., trees that had fallen over), the 
density layer was filtered using a threshold value of 0.043 ha-1. That is, anything with a density of 
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tree-loss greater than 0.043 ha-1 was considered harvesting, whereas other areas of loss were 
considered natural tree loss. The threshold value was calculated using a reference dataset based on 
a human interpretation of 406 sample patches. While using a single threshold value will result in 
some misclassifications, in this work it was shown to have a high accuracy (97%).  

The workflow summarised here was repeated for each of the 253 PNF properties where ALS was 
collected in both 2020 and 2021. The final harvesting layers (presence/absence) were summarised 
to calculate the area impacted. Because the selection of properties was based on a stratified random 
sample, reliable estimates and confidence intervals across the entire NSW northeast could be 
derived. Note that this would not be possible without a robust sampling framework (Kathuria 2023). 

Results & discussion 

The area of private native forests impacted by harvesting across the one-year period (2020-2021) 

was estimated to be 1665 ha ( 492 ha at the 95% confidence level) or 0.37% ( 0.11%) across 
455,000 ha (total area with an approved PNF plan as of March 2020). The results for each stratum 
are shown in Table 3. Note that the standard errors and thus the 95% confidence interval may at 
first glance seem high, however this is because the area impacted by harvesting is comparably low 

 

Figure 8. Workflow for processing the LiDAR to estimate canopy loss due to harvesting (Hislop 
et al. 2024). 

 

Figure 9. Example of the output from the CHM differencing method (Hislop et al. 2024). 
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(0.37%). In addition, many properties recorded no harvesting at all within the one-year period. The 
sampling design also allowed for a comparison based on different property size classes and time 
since plan approval. The results suggested that harvesting is more likely to occur soon after plan 
approval and was slightly greater in percentage terms for plan areas < 200 ha. The authors also 
attempted to investigate broad patterns of harvesting by aggregating results to a 10km grid and 
looking at the average height loss and density (Figure 10). No clear patterns were observed, based 
on the limited dataset. 

Also of note, 30% of the tree-loss identified was considered natural loss (e.g., trees falling over on 
their own accord). It is not known whether this is a ‘normal’ rate of attrition or was exacerbated by 
the 2019-20 drought and wildfires. As mentioned above, satellite imagery is likely to miss many 
harvesting events, particularly those of low intensity. However, low intensity events also contribute 
less to the overall area harvested, so the omissions may be largely negligible for estate-level 
monitoring and reporting purposes. Further assessment and discussion on using satellite imagery to 
estimate forest harvesting through the Statewide Landcover and Tree Study (SLATS) program is 
provided in Section 4.2. 

Table 3. Stratum level estimations of all canopy loss and that due to harvesting based on the 
spatial density threshold (Hislop et al. 2024). 

Year 
stratum 
(PNF plan 
approval) Area Stratum 

Population 
Area (ha) 

Estimated 
Canopy 
Loss (ha) 

Percent 
Canopy 
Loss 

Estimated 
Harvesting 
Loss (ha) 

Standard 
Error 
(ha) 

Percent 
Harvesting 

Pre-2016 < 50 ha 28,111 198.9 0.71 171.3 117.9 0.61 

Pre-2016 50 to 200 ha 71,227 178.8 0.25 72.9 39.2 0.10 

Pre-2016 200 to 500 ha 86,476 296.7 0.34 151.0 67.7 0.17 

Pre-2016 > 500 ha 169,090 755.6 0.45 458.7 178.3 0.27 

2016-2019 < 50 ha 9,801 38.0 0.39 18.3 11.3 0.19 

2016-2019 50 to 200 ha 22,309 196.6 0.88 153.6 64.9 0.69 

2016-2019 200 to 500 ha 26,546 219.4 0.83 183.7 60.3 0.69 

2016-2019 > 500 ha 22,895 134.9 0.59 99.5 39.3 0.43 

2019-2020 < 50 ha 2,731 100.0 3.66 92.5 15.5 3.39 

2019-2020 50 to 200 ha 4,715 161.7 3.43 149.0 37.6 3.16 

2019-2020 200 to 500 ha 6,035 123.1 2.04 112.9 0.0* 1.87 

2019-2020 > 500 ha 4,829 7.7 0.16 1.8 0.0* 0.04 

Total   454,764 2411 0.53 1665 251 0.37 

*the standard error for these strata is 0 because all properties in the population were included 
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Key takeaways 

Monitoring area harvested over time can help us understand, in part, production trends over 
time, which relates to the PNF outcome ‘maintain the productive capacity’ and also has links to 
‘maintain forest health and regeneration’ and ‘maintain the persistence of native species’. 

Key to the above work was the capture of ALS samples across two time-steps one year apart. 
Because the ALS samples were collected in a design-based sampling framework, the harvested 
area across the whole region could be estimated, along with statistically derived confidence 
intervals. 

This study represents what is possibly the most comprehensive and accurate assessment of PNF 
harvesting impacts to date. It is not known whether the figures for 2020-2021 represent a typical 
year, however, the results are a baseline that future monitoring can be compared against. 
Although multi-date ALS provides comprehensive and highly accurate information, the cost of 
repeat acquisitions can be an inhibiting factor. Therefore, lower accuracy satellite imagery may be 
a preferred approach for monitoring area harvested (see Section 4.2). 

Opportunities for further work 

Areas harvested could be intersected with forest type mapping (e.g., Yield Association Groups or 
Plant Community Types) to explore species specific patterns and trends. Data collected for this 
indicator could also be used for the riparian, slope and track related indicators discussed in 
Section 3. 

 

Figure 10. Average height loss and spatial density, aggregated to a 10 km grid (Hislop et al. 
2024). 
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2.3. Canopy gaps 

Introduction 

Gaps in the forest canopy can be both desirable and undesirable. From a regeneration perspective, 
canopy gaps are important so that shade intolerant species can access sunlight. On the other hand, 
canopy gaps are a form of fragmentation and may inhibit some fauna species’ ability to move 
throughout an area. Canopy gaps may also change habitat conditions by drying out the forest floor. 
Repeat measurements over time could be used to understand canopy gap dynamics (rate and extent 
of closure) as the forest regenerates. Here, we present an aggregated assessment of canopy gaps 
across the properties where recent ALS data was collected. 

It is important to note that spatial scale has a direct influence on how gaps are represented. Gaps 
may be evident in high-resolution products such as LiDAR derived canopy height models (CHMs) but 
not in satellite derived forest cover maps. It is unlikely that Sentinel-2 satellite imagery (10m pixel 
resolution), for example, would be able to provide an accurate assessment of canopy gaps for 
monitoring PNF at the site scale. 

In this section, a process for extracting canopy gaps from a 1m canopy height model (CHM) is 
presented. A summary of a selection of PNF plan areas in northeast NSW is provided, using the DPI 
R&D program ALS from 2021 only. 

Methods 

LiDAR derived canopy height models (CHMs) from only the 2021 DPI R&D program LiDAR were 
processed into binary canopy gaps products using a 2m height threshold (i.e., every pixel below 2m 
is given a value of 1, all other pixels are set to 0). These products were intersected with the PNF plan 
areas and filtered to include only patches with greater than 50 connected pixels (50 m2; Figure 11). 
These derived layers were then used to calculate landscape statistics for each property, including the 
number of individual gaps and percent area covered by gaps. 

Results & discussion 

The number of canopy gaps and area percentage using a patch size greater than 0.005 ha were 
calculated for each of the 253 properties, using the ALS data from 2021. The properties were split 
into three categories based on the area impacted by harvesting between 2020 and 2021, according 
to work undertaken by Hislop et al. (2024) (see Section 2.2). The classes used were: Recent 
harvesting (total area in the property greater than 1.5 ha), Limited recent harvesting (area between 
0 and 1.5 ha) and, No recent harvesting. This enabled a class comparison for the purposes of this 
report (Figures 12 – 14). However, we have not verified that the individual canopy gaps identified 
here are related to harvesting. It is possible that many gaps are natural persistent landscape features 
and were also present in the 2020 data (not tested here). Verifying if gaps are related to harvesting 
would require additional information, such as on-ground validation or a cross-reference with area 
harvested maps (e.g., Section 2.2) or landholder post-harvest reporting, which is now required under 
the PNF codes of practice released in May 2022. In summary, the methods and results for this 
indicator are based on a single ALS capture and not intended to represent area harvested, which was 
addressed in the previous indicator (Section 2.2). 
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Figure 11. Example canopy height model (top) and canopy gaps greater than 0.005 ha 
(bottom). 
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The median number of canopy gaps greater than 0.005 ha for properties with recent harvesting was 
582, while for properties with no recent harvesting, the median number of gaps was 193 (Table 4). 
However, if we convert these counts to a per hectare value, the median number of gaps is much the 
same for all three classes (3.6 – 3.9). This likely reflects the fact that most recent harvesting (in area 
terms) occurred in larger properties. 

 

 

Figure 12. Relative density of the number of gaps per PNF plan for gaps greater than 0.005 ha. 

 

Figure 13. Relative density of the number of gaps per hectare per PNF plan for gaps greater 
than 0.005 ha. 
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Table 4. Median number of gaps > 0.005 ha, gaps per ha and area covered by gaps (per property 
– 2021 ALS only). 

 

Number of 
gaps 

Number of 
gaps per ha 

Area covered 
by gaps 

Recent Harvesting 582 3.9 11.08 

Limited Recent Harvesting 521 3.8 10.39 

No Recent Harvesting 193 3.6 8.53 

 

Key takeaways 

The analysis presented here suggests that more gaps exist in recently harvested areas compared 
with the other areas under PNF plans. However, it is expected that the majority of these will close 
as the forest regenerates and the crowns of neighbouring trees expand. This could be confirmed 
with future ALS acquisitions. 

Although ALS data provides a precise method of mapping and quantifying canopy gaps, the 
expense of acquisition means that the data may be best collected as samples. A robust sampling 
framework allows inferences to be made about the population as a whole. 

Opportunities for further work 

The gap analysis could be undertaken with different height thresholds and different gap sizes to 
cater to the requirements of different fauna species. 

Comparisons across bioregions, tenures etc. may also be worthwhile avenues for future research. 

 

Figure 14. Relative density of the area percentage covered by gaps per PNF plan for gaps greater 
than 0.005 ha. 
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2.4. Volume and basal area 

Introduction 

Inventory attributes such as volume and basal area have traditionally been collected on the ground 
in sample plots. If the plot data is collected in an appropriate design-based sampling framework, 
inferences about the whole area in question can be made. An alternative/complementary approach 
to estimate inventory attributes is to combine field measurements with ALS data, which has been 
referred to as the ‘area-based approach’ (White et al. 2013). In the area-based approach, forest 
inventory attributes are predicted across the extent of the ALS coverage by setting up statistical 
dependencies between ALS derived predictor variables and ground-based response variables. The 
main advantages of the area-based approach are full spatial knowledge of the predicted attributes 
and more precise estimates of certain variables. It also somewhat circumvents the need for a pure 
design-based statistical sampling framework, opening the door to alternatives such as hybrid or 
model-assisted sampling strategies. 

Methods 

The general workflow for the area-based approach is to, firstly, extract the relevant LiDAR point-
clouds for sample plots which have measured values of the response variables in question (e.g., 
volume or basal area). A model is then created to determine the statistical relationships between 
the response variables and the LiDAR metrics. This model is then used to predict the response 
variables across the broader ALS extent using the grid-based wall-to-wall LiDAR metrics (Figure 15). 

We demonstrate the process here using plot and ALS data from Forestry Corporation of NSW 
(FCNSW) because of the limited plot data availability in PNF areas. FCNSW provided plot level 

 

Figure 15. Schematic of the area-based approach (from White et al. 2013) 
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information for volume and basal area for 1739 plots. These were cross-referenced with available 
ALS data and filtered to include only those with a close temporal match (within 3 years) and no 
harvesting event between the ALS capture and the plot measurement. This left 227 plot 
measurements that were considered reliable for modelling purposes. Two separate Random Forests 
models were constructed: one for basal area and one for volume. Random Forests is an ensemble 
learning algorithm for classification and regression, which is based on a series of decision trees. Each 
tree is made up of a random subset of the available data and variables. The final model outcome is 
essentially based on an average of all the trees (i.e., the forest). Here, because the desired output 
values were continuous variables, the Random Forests algorithm was used in regression mode. 
Random Forests is popular in remote sensing spatial models due to its robustness to over-fitting, 
outliers and class imbalance (Mellor et al. 2015).  

The same LiDAR metrics used earlier for the structural complexity indicator were used here as 
predictor variables (top height, average height, skewness, standard deviation and canopy cover). 

Results & discussion 

The model for volume was able to explain 65% of the variance in the data, according to the Random 
Forests in-built out-of-bag assessment, while the model for basal area was able to explain 55%. 
These models could likely be improved with more high-quality training data and additional predictor 
variables, however, the results here are satisfactory to demonstrate the potential of the process.  

The models were then used to predict volume and basal area across the PNF ALS transects from 
2020 and 2021 (Figure 16). Note, we do not recommend using a model created in State forests to 
predict into private forests, due to differences in forest management practices. It was used here to 
demonstrate a process in the absence of specific PNF plot data, and the results may provide a broad 
estimate of these metrics. Field-based validation for accuracy assessment would be required before 
having confidence in the results. 

Average values were computed by intersecting the modelled surfaces with the PNF plan areas. The 
average volume across the predicted PNF plan areas with ALS in 2021 was 207 m3/ha. The average 
basal area was 24 m2/ha. If we consider only those properties where recent harvesting had occurred 
(see Section 2.2), the average volume was actually slightly greater (210 m3/ha) while the average 
basal area was essentially the same. This suggests that the intensity of harvesting on PNF has limited 
impact on these metrics and the remaining basal area appears well above the threshold value of 14 
m2/ha specified in the PNF codes. Further investigation would be required to confirm this. 
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Key takeaways 

Spatial modelling as demonstrated above is a tried and tested method to produce maps of 
variables of interest which cannot be measured directly with remote sensing. 

The accuracy of the modelled products is dependent on the quality of the training data along with 
the ability of the predictor variables in capturing the variation in the training data. 

Field validation in PNF areas would be required before having confidence in these results. 

Opportunities for further work 

The above output maps could be validated with PNF specific field data to provide an 
understanding of whether the models are broadly transferrable from State forests to private 
forests. 

The accuracy of the models used here could potentially be improved with more training data and 
a larger number of predictor variables, including non-ALS data (e.g., satellite imagery, terrain, 
climate, etc.).  

3. Remote sensing terrain indicators 

This section presents examples of potential remote sensing indicators related to forest terrain (or 
the ground surface under the trees). Monitoring the ground surface, including aspects of soil 
erosion, drainage features and forest infrastructure (e.g., roads and tracks), is an important 
consideration for a forest monitoring program, as these are related to habitat, water quality and the 
forest’s ability to regenerate. Note that these indicators overlap with compliance functions, which 
would need to be considered prior to application in a monitoring program. 

 

Figure 16. Examples of modelled volume and basal area across a sub-sample of PNF plan areas. 
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3.1. Slope exclusion areas 

Introduction 

It is generally accepted that harvesting should not occur on steep slopes. Not only is it potentially 
dangerous for the operators, it can have adverse impacts on soil erosion and flow-on negative 
impacts to water quality and stream condition. The PNF codes specify that harvesting should not 
occur on slopes greater than 30 degrees. 

The slope of the terrain can be calculated from a digital terrain model (DTM or digital elevation 
model – DEM). This is achieved by considering each pixel in relation to its surrounding 8 pixels. There 
are automatic functions in most GIS software to calculate slope from a DTM. Here, the terrain 
function in the R package terra was used. 

An example of a 1m DTM and 30m DTM for the same area is shown in Figure 17. Figure 18 shows 
the slope layer computed from the 1m DTM and a derived slope exclusion layer, with slopes above 
30 degrees highlighted. 

Note that LLS has existing slope data that it uses for PNF purposes. The information presented here 
is provided to demonstrate a method rather than as a suggested replacement for existing datasets. 

 

 

Figure 17. Example of a 30m DTM from the Shuttle Radar Topography Mission (SRTM), which is 
available globally, and a 1m DTM generated from ALS. 
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Methods 

A simple analysis was undertaken here to provide a general summary with respect to PNF plan areas 
and their intersection with various slope classes. Here, we used a slope layer generated from NSW 
Spatial Services ALS data across northeast NSW (Figure 19). This layer overlaps with over 70% of the 
area of PNF plan approvals in NSW. The slope layer was first classified into 10-degree slope classes 
(0-10, 10-20, 20-30, 30-40, >50) and intersected with PNF plan areas to derive summary statistics. 

Results & discussion 

The intersection of the slope class layer with the PNF plan area boundaries in northeast NSW 
indicates that most (93%) of the forest areas in the northeast with PNF plans have slopes below 30 
degrees (Table 5). Approximately 7% of the total PNF area was found to have a slope greater than 30 
degrees, which should be excluded from harvesting. Note that approved areas in a PNF plan do not 
represent the net harvestable area and may include exclusion areas where harvesting operations are 
prohibited (e.g., steep slopes, riparian buffers). 

Table 5. Area (ha) and percent of PNF plan approved areas in each slope class in northeast NSW 
according to NSW Spatial Services ALS data. 

Slope class Area (ha) Percent 

0-10 172,055 36.3 

10-20 155,454 32.8 

20-30 114,268 24.1 

30-40 30,506 6.4 

 

Figure 18. Example of a slope layer generated from 1m DTM and a slope exclusion layer with 
slopes above 30 degrees (red). 
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40-50 2,141 0.5 

> 50 200 0.04 

 

Key takeaways 

Calculating slopes from a DTM is a reasonably straightforward process. Results can vary 
depending on the quality and resolution of the DTM so it should not be assumed that the slope 
layer is 100% accurate. 

Opportunities for further work 

Noting the overlap with compliance functions, consider if this indicator may be more appropriate 
to use as a compliance tool. 

The slope exclusion areas (greater than 30 degrees) could be cross-referenced with known harvest 
areas (e.g., from Section 2.2) to calculate the percentage that are maintained. 

 

Figure 19. Slope class layer derived from NSW Spatial Services ALS data 



 

 

  29 

 

 

3.2. Riparian exclusion areas 

Introduction 

Harvesting operations are prohibited in areas close to streams, which protects the riparian areas 
from erosion and debris entering the waterways. Existing stream order data exists across NSW4, 
where stream order refers to the number of upstream tributaries each stream has. This dataset is 
not 100% accurate and therefore if high-resolution ALS data exists, it may be preferable to use it to 
produce a more accurate map of riparian exclusion areas. 

Here, we demonstrate the processing steps required to create a stream order dataset from a digital 
terrain model (DTM). There are a range of algorithms in different software packages available for 
extracting streams from a DTM (e.g., hydrology toolsets in ArcGIS, watershed functions in GRASS 
GIS, flow accumulation tools from Whitebox Geospatial). The standard process used by the 
algorithms is calculate the flow direction of each pixel in relation to its neighbours and use this 
information to calculate the flow accumulation across multiple pixels (Figure 20). By setting relevant 
minimum accumulation thresholds a representation of the stream network can be generated. 

Methods 

A worked example of the required process is presented here, using a combination of Whitebox tools, 
GRASS GIS functions and R (Figure 21). Firstly, the flow accumulation and direction were calculated 
using a DTM (here a high-resolution 1m DTM was used). Following this process, the streams were 
extracted using the extract_streams Whitebox function. In this function, a threshold value needs to 
be defined, which refers to the minimum value in the flow accumulation raster that is accepted as a 
stream. Here, a value of 2000 was used, which was chosen using trial and error. Following the 
stream extraction process, the streams were ordered according to the Strahler stream ordering 
method (specified in the PNF codes). This ordering system means that streams with no others 
flowing into them are termed 1st order, streams with one other flowing into them are 2nd order and 
so on. Generally, the higher the order, the larger the stream will be. Note that the threshold flow 
accumulation value will also influence the stream ordering. If a higher threshold value is used, then 
streams may end up with a lower stream order value. 

The stream order raster was converted to a vector dataset using GRASS GIS, as this function 
appeared to produce a superior output than the Whitebox equivalent. The streams were then 

 
4 https://spatial.industry.nsw.gov.au/arcgis/rest/services/PUBLIC/StreamOrder/MapServer 

 

Figure 20. Example of flow direction and its relationship to flow accumulation. Source: ESRI 
ArcGIS Pro help 

https://spatial.industry.nsw.gov.au/arcgis/rest/services/PUBLIC/StreamOrder/MapServer
https://pro.arcgis.com/en/pro-app/3.1/tool-reference/spatial-analyst/how-flow-accumulation-works.htm
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smoothed to remove jagged artifacts before buffers were applied using the R package sf. As 
specified in the codes, 1st order streams were given a 10m buffer, 2nd order 20m and 3rd order or 
higher 30m. These buffered areas represent riparian exclusion zones. 

Results & discussion 

Example results from four of the steps in the workflow are shown in Figure 22. A comparison 
between the streams generated through this process and those in an existing state-wide dataset are 
shown in Figure 23. This highlights that, depending on the base product and processing decisions 
made, results can vary significantly. This is important from the perspective of exclusion areas being 
accurately monitored, as there may be discrepancies between on-ground harvesting operations and 
mapped streams. 

 

 

Figure 21. Workflow for creating the riparian exclusion areas from a LiDAR derived DTM. 

Flow accumulation full workflow

Extract streams

Strahler stream order

DTM (from 
ALS)

Accumulation Direction

streams
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Raster to vector (lines)
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streams

Exclusion
areaWhitebox tools R (sf pkg)

GRASS GIS

 

Figure 22. Example of a 1m DTM (A), flow accumulation raster (B), and derived stream order 
and exclusion areas based on specified buffer distances (C). 

A B C



 

 

  31 

 

 

 

Key takeaways 

An accurate DTM derived from high resolution ALS is likely to produce the most accurate stream 
network. However, if this is not available, existing stream order data could be used. 

Opportunities for further work 

Noting the overlap with compliance functions, consider if this indicator may be more appropriate 
to use as a compliance tool. 

The buffered stream order data could be cross-referenced with known harvest areas (e.g., from 
Section 2.2) to calculate the percentage of riparian exclusion areas that are maintained. 

3.3. Roads and tracks 

Farm and forest tracks crossing ephemeral and perennial streams, particularly those that are poorly 
designed and constructed, may cause a reduction in the water quality of NSW's headwater streams. 
Roads and tracks are a cumulative problem for water quality – once they are constructed, they are 
very rarely removed. Lidar data offers a way of assessing whether this problem is significant in PNF 
and whether or not the problem is increasing. Airborne LiDAR has the ability to penetrate the forest 
canopy and provide an accurate model of the ground (i.e., a DTM). With high density ALS, tracks can 
be identified, including temporary tracks made for harvesting operations. With two ALS captures 
(e.g., pre- and post-harvest), the difference between too DTMs can be undertaken, in a similar vein 
to the difference in CHMs discussed previously (Section 2.2). Differences could be quantified as a 
means of monitoring ground-based disturbance, where removals may equal new tracks or other 
types of soil erosion and additions could be from debris build-up. However, manual interpretation 
would be needed to assign a causal agent to these disturbances. Also note that differences may not 

 

Figure 23. Comparison of the streams generated from the 1m DTM and an existing state-wide 
stream order dataset (dashed black lines) 
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be true change, as there will always be a small amount of noise in the data, due to sensor scan 
angles, positional inaccuracies etc. 

While automated methods for extracting streams from DTMs (Section 3.2) are reasonably well 
established and conceptually simple, methods for extracting roads or tracks are far less advanced. 
Here, we provide examples of the information available in DTMs for highlighting areas of change and 
indicating forest tracks which are often not visible in aerial imagery (i.e., shaded by tree canopies). 
Figure 24 shows DTMs from the 2020 and 2021 ALS data. To the naked eye, there is no discernible 
difference, however if we subtract one raster from the other, differences (in the range of 1-2m) are 
apparent (Figure 24-C). 

To more easily visualise features in DTMs, hillshade rasters can be created (Figure 25). This method 
uses the slope and aspect layers (derived from DTMs) and a hypothetical sun angle to assign a shade 
value to each pixel. In Figure 25, example hillshade rasters in a harvesting area for 2020 and 2021 
are shown. These indicate that the main tracks run along ridge lines, with some smaller tracks and 
drainage features also apparent. The tracks in these examples do not appear to intersect drainage 
lines (i.e., the gullies). 

As mentioned above, automated methods for extracting roads and tracks from LiDAR DTMs are not 
readily available. Therefore, it is recommended that monitoring tracks in relation to drainage 

 

Figure 24. DTM from 2020 (A), DTM from 2021 (B), difference between DTMs (C), where red is 
a negative change and green is a positive change 

 

Figure 25. Hillshade images derived from the DTMs for 2020 (A) and 2021 (B) 
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features is undertaken through a manual image interpretation exercise. It is not feasible to do this 
across all properties (or areas), therefore a random sample of locations should be selected for 
interpretation. A well-designed sampling framework should satisfy the requirements of a monitoring 
program, as the samples will be representative of the population as a whole. 

 

Key takeaways 

ALS data can highlight tracks under the forest canopy, however automatically extracting these is 
challenging. 

Manual interpretation methods may be the most pragmatic and accurate means for determining 
tracks with ALS data. A random sample (e.g., 30-50 properties) may be sufficient for monitoring 
purposes. 

Opportunities for further work 

Noting the potential overlap with compliance functions, consider if this indicator may be more 
appropriate to use as a compliance tool. 

To utilise ALS in the context of forest tracks and their impact on monitoring outcomes around 
water quality, an appropriate ‘indicator’ needs to be determined. For example, the number or 
percentage of tracks intersection drainage lines. 

4. Remote sensing satellite indicators 

In this section, bioregional scale indicators are presented using satellite derived information, 
including existing data products from the Australian government and the NSW Department of 
Climate Change, Energy, the Environment and Water (DCCEEW; formerly DPE) and NSW Department 
of Primary Industries. 

Bioregional scale indicators provide contextual information relating to landscape scale forest 
conditions and trends. PNF occurs within this broad context and bioregional indicators can support 
interpretation of monitoring program results. 

4.1. Spatial connectivity using the National Forest and Sparse 
Woody Vegetation data 

The National Forest and Sparse Woody Vegetation data is an annual Australia wide forest and sparse 
woody extent product produced by the Australian Government Department of Climate Change, 
Energy, the Environment and Water (DCCEEW)5. The product is based on Landsat data (~25m 
resolution) and contains 3 classes representing forest (> 20% canopy cover and >2m in height), 
sparse woody vegetation (canopy cover between 5% and 19%) and non-forest. Here, we used only 
the forest class to create a binary forest/non-forest cover product. 

A simple workflow is presented here to demonstrate how a forest extent layer can be used to 
represent forest connectivity. Note that connectivity is difficult to define and dependent on the 
data’s spatial resolution and scale of interest. Originally, we planned to use LiDAR derived CHMs at a 
1m resolution to look at connectivity at the site scale. However, because PNF plans only cover 
forested areas, the whole area within plan boundaries is more-or-less connected at that scale, with 

 
5 https://data.gov.au/dataset/ds-dga-b0d6b762-fe24-4873-91bd-ae0a8bbb452e  

https://data.gov.au/dataset/ds-dga-b0d6b762-fe24-4873-91bd-ae0a8bbb452e
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only small gaps, as shown in Section 2.3. Hence a regional representation of the northeast NSW is 
demonstrated here. We stress that the analysis presented is not intended to be an ecologically 
appropriate connectivity calculation, just a way to illustrate a process, the types of decisions and 
assumptions that could be applied in the analysis, and to illustrate how the results could be 
presented. The northeast region (also used in the earlier ALS examples) is 12.3 million hectares in 
area, of which approximately 60% is forest.  

Connectivity, as used here, is the inverse of fragmentation. Fragmentation in turn can be 
represented by the number and size of forest ‘patches’. Using the R package landscapemetrics 
(based on the FRAGSTATS program), the forest extent layers from 1988-2022 were converted into 
layers where each discrete patch of connected pixels is given a unique value. The number of discrete 
patches of forest across the region can then be counted (Figure 26). Here, we have discarded 
patches less than 1 ha in size, as these were considered irrelevant for the purpose of this exercise. 
The number of forest patches in northeast NSW was found to be around 62,000 and has remained 
fairly stable across the last three decades. 

Each unique forest patch can then be given a value equal to total area of the connected pixels in the 
patch. We then need to define a minimum area of forest to label as ‘connected’ forest (Figure 27). 
Here, a value of 1,000 ha was used as an example, but this value is arbitrary and is context 
dependent. Different fauna species would have different requirements with respect to forest 
connectivity and their ability to move throughout the landscape. Note that an enormous expanse of 
forest in this region (over 4.3 Mha) is connected based on the assumptions applied, despite it 
containing plenty of gaps. This broad assessment should not be used to consider species specific 
habitat requirements. 

 

 

Figure 26. Number of forest patches greater than 1 ha in northeast NSW between 1988 and 
2022, according to the National Forest and Sparse Woody Vegetation data 
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By intersecting the connected forest layer with the PNF plan areas, we can quantify the proportion 
of these forests that are connected to the surrounding environment. Using the connectivity layer 
from 2022, around 98% of the forest within PNF plan areas in northeast NSW was considered 
connected. The connectivity assessment undertaken here is a simplistic representation of 
connectivity to demonstrate a process. In the Biodiversity Indicator Program (BIP), 
connectivity/fragmentation is addressed more holistically in NSW through the indicators Ecological 
Connectivity of Terrestrial Habitat and Ecological Carrying Capacity of Terrestrial Habitat6. The 
datasets supporting these indicators are available on SEED7. An example is given in Figure 28. At this 
stage, these products are only available at a single time step. If more time steps become available, 
the products will be able to be used to look at changes through time and potentially used for 
monitoring purposes. 

 
6 https://www.environment.nsw.gov.au/-/media/OEH/Corporate-Site/Documents/Animals-and-
plants/Biodiversity/Biodiversity-Indicator-Program/biodiversity-outlook-report-first-assessment-200621.pdf  
7 https://datasets.seed.nsw.gov.au/dataset/biodiversity-indicator-program-data-packages  

 

Figure 27. Area of forest patches in northeast NSW with connected pixels (left) and a 
representation of connected and disconnected forest patches using a 1000 ha threshold value 
(right) 

https://www.environment.nsw.gov.au/-/media/OEH/Corporate-Site/Documents/Animals-and-plants/Biodiversity/Biodiversity-Indicator-Program/biodiversity-outlook-report-first-assessment-200621.pdf
https://www.environment.nsw.gov.au/-/media/OEH/Corporate-Site/Documents/Animals-and-plants/Biodiversity/Biodiversity-Indicator-Program/biodiversity-outlook-report-first-assessment-200621.pdf
https://datasets.seed.nsw.gov.au/dataset/biodiversity-indicator-program-data-packages
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Key takeaways 

PNF harvesting is unlikely to lead to large changes in forest connectivity. Although canopy gaps 
are temporarily created, large scale fragmentation would only occur if the PNF codes are not 
being followed. 

The BIP indicators and derived products should be considered moving forward, particularly if 
these products will be produced at regular time-steps. 

4.2. Satellite derived tree loss using the Statewide Landcover and 
Tree Study (SLATS) data 

The main objective of the Statewide Landcover and Tree Study (SLATS) Woody Vegetation Change is 
to map the location and extent of woody vegetation clearing each year across NSW8. This has been 
achieved over the last three decades using various satellite imagery sources (Landsat, SPOT and 
more recently Sentinel-2). In the SLATS data, woody vegetation loss is classified into four categories: 
natural, agricultural, infrastructure and forestry. As indicated in the SLATS documentation, 

 
8 https://www.environment.nsw.gov.au/topics/animals-and-plants/native-vegetation/landcover-science/2021-nsw-
vegetation-clearing-report  

 

Figure 28. Ecological Connectivity of Terrestrial Habitat from the Biodiversity Indicator Program 

https://www.environment.nsw.gov.au/topics/animals-and-plants/native-vegetation/landcover-science/2021-nsw-vegetation-clearing-report
https://www.environment.nsw.gov.au/topics/animals-and-plants/native-vegetation/landcover-science/2021-nsw-vegetation-clearing-report
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“assignment of these classes is primarily based on visual interpretation of the location and the 
pattern of the clearing with reference to supporting data sources such as tenure.” SLATS data from 
1988–2020 is currently publicly available. The dataset for 2021 is not yet publicly available but was 
provided for this analysis. 

Here, we spatially intersected the SLATS data from 2017–2021 (which is based on 10m Sentinel-2 
satellite imagery) with the PNF plan boundaries provided by Local Land Services (LLS). An area of loss 
was calculated for each class and year by summing the pixels. Figure 29 shows an example of SLATS 
tree-loss data compared with ALS-derived tree-loss data (see Section 2.2) for an area of private 
forest where recent harvesting has occurred. 

Results from intersecting the SLATS data with the PNF plan areas are shown in Table 6 (whole of 
NSW) and Table 7 (northeast NSW). Note that northeast NSW contains a large proportion of the 
approved PNF plan areas, which is reflected in the values in Table 7 making up a considerable 
proportion of the state-wide values. 

The SLATS area value for the forest class for northeast NSW for 2020 (1264 ha) is not too dissimilar 

to that estimated by Hislop et al. (2024) using the multi-date ALS samples, which was 1665 ha ( 
492). Note that a direct comparison cannot be made due to the time period not aligning exactly (the 
ALS was from April 2020 and April 2021), while SLATS is nominally based on a calendar year (this is 
not exact and depends on image availability). Based on the limited assessment undertaken here, 
SLATS appears to be picking up a reasonable amount of the higher intensity harvesting events. 
Detecting low intensity harvesting with moderate resolution satellites like Sentinel-2 is likely not 
possible. Hislop et al. (2024) indicated that many of the lighter harvesting events were not even 
visually apparent in Sentinel-2 data. 

 

 

Figure 29. Example of SLATS tree loss data (blue) compared with the ALS-derived tree loss (red) 
on an example PNF property, with the CHM from 2020 shown in green. Note that the pre- and 
post-dates for both datasets do not perfectly align. 
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Table 6. Area (ha) of tree loss in PNF plan areas across NSW according to SLATS data 

Year Natural Agricultural Infrastructure Forestry Total 

2017 335 80 94 885 1,393 

2018 76 119 115 757 1,067 

2019 30,072 116 155 592 30,935 

2020 4,462 35 122 1,550 6,170 

2021* 1 30 75 1,346 1,452 

            *provided by NSW DCCEEW for use in this project 

Table 7. Area (ha) of tree loss in PNF plan areas in northeast NSW according to SLATS data 

Year Natural Agricultural Infrastructure Forestry Total 

2017 334 72 77 806 1,290 

2018 58 88 70 603 819 

2019 29,789 89 126 439 30,444 

2020 3,385 19 62 1,264 4,730 

2021 1 27 62 942 1,032 

 

Key takeaways 

The SLATS Woody Vegetation Change product based on 10m Sentinel-2 satellite imagery appears 
to capture a reasonable proportion of PNF harvesting and is likely more effective for higher 
intensity harvesting. SLATS data will not be able to accurately capture small scale or low intensity 
harvesting. 

Intersecting the yearly SLATS products with active PNF plan areas is a straightforward exercise to 
provide rough estimates of area harvested, however an understanding of capabilities and 
limitations is necessary. 

Opportunities for further work 

SLATS could potentially be extended (or calibrated) to focus more directly on PNF harvesting 
related woody change. Regardless of whether this occurs, using SLATS in conjunction with ALS 
data, collected within a statistically robust sampling design, will likely yield more reliable results.  
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4.3. Fire disturbance using the Fire Extent and Severity Mapping 
(FESM) data 

The NSW Fire Extent and Severity Mapping (FESM) program provides annual maps of fire extent and 
severity across NSW at 10m spatial resolution9. It is based on a machine learning model that uses 
Sentinel-2 imagery trained with manually interpreted high-resolution aerial imagery (Gibson et al. 
2020). The fire severity classes are outlined in Table 8. FESM products are available from 2016/17 
onwards (note that 2016/17 is based on Landsat-8 data). 

Table 8. Description of the five fire severity classes presented in the FESM products 

Severity class Description 

Unburnt Unburnt surface with green canopy 

Low Burnt surface with unburnt canopy 

Moderate Partial canopy scorch 

High Full canopy scorch (± partial canopy 
consumption) 

Extreme Full canopy consumption 

Here, we intersected the FESM data layers from the 2018/19 fire season onwards with the current 
PNF plan area boundaries (~650,000 ha) to provide an estimate of the area of forest within the 
relevant properties that was disturbed by fire over the last five years (Table 9). 

Table 9. Area (ha) of PNF plan areas (state-wide) disturbed by fire in each FESM severity class 

Year Low Moderate High Extreme Total 

2018-19 8,499 9,960 3,040 354 21,853 

2019-20 47,558 67,593 44,618 29,750 189,520 

2020-21 504 569 146 13 1,232 

2021-22 348 300 61 3 713 

2022-23 336 220 53 6 615 

Due largely to the extreme fire season of 2019-20, the area of PNF forest impacted by fire in recent 
years is substantial (~40%). Note that subsequent analysis of post-fire recovery with satellite-derived 
spectral indices has indicated much of the coastal northeast in particular has shown strong spectral 
recovery (e.g., Gibson and Hislop 2022; Gibson et al. 2022; Hislop et al. 2023). 

Key takeaways 

The FESM products offer a means of assessing fire severity across broad areas. It is important to 
recognise that, as a modelled product primarily based on Sentinel-2 imagery, it is not 100% 
accurate and may not be appropriate for site scale monitoring. 

Since the focus of FESM is to map wildfires, it is unlikely to be suitable for characterising sub-
canopy fuel reduction burns. 

 
9 https://datasets.seed.nsw.gov.au/dataset/fire-extent-and-severity-mapping-fesm  

https://datasets.seed.nsw.gov.au/dataset/fire-extent-and-severity-mapping-fesm
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4.4. Drought and fire disturbance and recovery using satellite 
time-series 

The 2018–2019 drought in southeast Australia led to the unprecedented wildfires during the second 
half of 2019 and into 2020. In addition to the large areas of forest that burned, there was significant 
canopy collapse from the drought itself, leading to dieback and some tree mortality. Using Sentinel-2 
satellite imagery, Hislop et al. (2023) attempted to map the location areas of forest that were 
impacted by the drought, including areas which were later burnt by wildfire. 

Monitoring forest disturbance and recovery across broad areas using satellite time series is now well 
established, with several time series change detection algorithms in existence (e.g., Hermosilla et al. 
2015, White et al. 2017). However, many of these algorithms are based on an annual time series 
with a focus on longer historical time-frames (and therefore use Landsat data). Because Hislop et al. 
(2023) aimed to map multiple disturbances (e.g., drought and fire) in a short time-period, a higher 
frequency time series was required. The authors therefore developed a method which used a 
monthly time series of Sentinel-2 satellite imagery. A brief summary is given here and the outputs 
are intersected with PNF plan areas to provide summary statistics. More information on using 
satellite time series to investigate structural recovery is provided in Appendix 1.4. 

Figure 30 indicates the approach that was applied to each individual pixel. Firstly, baseline pre-
drought conditions were established, based on the mean and standard deviation of the Normalized 
Burn Ratio (NBR) index from 2016–2018. Following this, monthly median values for each month 
from August 2019 onwards were calculated. These were then converted into z-values (secondary y-

axis in Figure 30) based on the formula 𝑧 =  
𝑥 − 𝜇

𝜎
 . 

Bioregion specific thresholds were used to determine if and when the pixel first became ‘disturbed’, 
and this was cross-referenced with known fire locations and timings to indicate whether the 
disturbance was due to drought or fire (or both drought and fire). The resultant map of disturbed 
areas is shown in Figure 31. This figure also indicates the time-frame that disturbed areas spent 
under the threshold at different latitude slices. This visual shows that areas in the north were 
impacted earlier and spent slightly less time under the threshold than areas in the south. 
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The intersection of the drought extent map with PNF plan areas showed that a significant proportion 
of PNF plan areas were affected by either drought or fire or both during 2019 and early 2020, with 
only 24% classified as not disturbed (Table 10). 

Table 10. Area and percentage of PNF plan areas disturbed in the 2019–2020 drought and 
wildfires, according to Hislop et al. (2023). Note that this covers over 90% of PNF plan areas. 

Disturbance class Area (ha) Percent 

Not disturbed 144,322 24.2 

Fire only 152,658 25.6 

Drought only 216,515 36.3 

Drought and fire 75,767 12.7 

Fire (previous year) 6,472 1.1 

 

    

Figure 30. Example of an individual pixel through time. Sentinel-2 NBR values are shown in grey 
and the monthly median values for 2019 onward in blue. The horizontal lines are the mean and 
standard deviation for the stable period (2016-2018), used to calculate the z-scores (from 
Hislop et al. 2023).  
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In Hislop et al. (2023), forest recovery was explored further by extracting 50,000 random pixel 
samples in five classes and comparing the z-values across three different years – the year of 
disturbance, 1-year post-disturbance and 2-years post disturbance (Figure 32). This analysis 
suggested that most areas had substantially recovered spectrally from both the drought and fires 
after two years, a finding that was echoed by Gibson and Hislop (2022) in their initial assessment of 
forest recovery in wildfire impacted areas. Note that spectral recovery (that is, what satellites such 
as Landsat and Sentinel-2 remotely sense) does not equal structural or functional recovery. 
However, it has been shown to act as a reasonable proxy (e.g., White et al. 2019), and in the absence 
of other information may be suitable for broadscale assessments. 

 

Figure 31. Map of disturbed areas in each class and the corresponding aggregated areas of 
disturbance across 50 km slices of latitude, where the darker colours indicate a greater area 
under the threshold. A zoomed in map of a small area is also shown (from Hislop et al. 2023).  
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Key takeaways 

Spectral time series with moderate resolution satellites (e.g., Landsat, Sentinel-2) has an 
established track record in broadscale forest monitoring, particularly with respect to 
characterising large abrupt disturbances such as wildfire and clear-fell harvesting. Techniques to 
track post-disturbance recovery are advancing but still developing. 

The methods outlined here (Hislop et al. 2032) represent a new approach for investigating large 
scale drought impacts. Further research is required in this domain. 

Moderate resolution spectral time series is limited in its ability to accurately represent forest 
regeneration after selective harvesting. 

Opportunities for further research 

There are many avenues for ongoing research in this domain. One obvious area is to look at ways 
to link structural recovery from multi-date LiDAR with the spectral recovery from satellites. 

5. Conclusion 

This report shows that a multitude of remote sensing systems exist, which can provide data that can 
be analysed to provide results related to the structure and condition of native forests. However, no 
single system can provide all the necessary data suitable for the multi-scale spatial requirements 
being considered for the PNF MER (i.e., at both site and bioregional scales). Appropriate coverage at 
all the necessary spatial scales requires the acquisition of data from multiple platforms (including 
field data), collected within a statistically defendable sampling strategy. 

This report has also demonstrated that numerous data workflows are available to derive a large 
suite of potential indicators. However, while it is now possible to generate these results, it is also 

 

Figure 32. Boxplots showing z-values of 50,000 samples for the four disturbed categories and 
an undisturbed category in January–February 2020, November–December 2020 (∼1 year 
recovery) and November–December 2021 (∼2 years recovery) (from Hislop et al. 2023).  
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important that the interpretation of results is linked to forest management. This requires knowledge 
of the temporal behaviour of forests at both site and bioregional scales, and how various attributes 
are reflected in specific indicators at a given point in time. 

The use of remote sensing for forest monitoring is increasingly being used across the world to 
compliment traditional field-based inventory plots. While sensors and systems are continuously 
improving, there will always be limitations in what can be reliably measured and the accuracy of 
such measurements.  

The worked examples and potential indicators presented in this report should act as a starting point 
for further development and analysis in the context of PNF monitoring with remote sensing. The 
techniques and data presented offer many opportunities for further research questions to be 
explored. However, this would likely require more open data policies, additional funding and 
scientific curiosity. 
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Appendix 1. Low feasibility indicators: background 
information 

In this section, background information based on existing literature for an additional four potential 
remote sensing indicators is presented. These indicators are seen as low feasibility, due to high 
costs, difficulties in implementation and the use of emerging technologies. These indicators may be 
valuable to consider in future, as technology and knowledge advances. 

1.1. Vertical connectivity  

The vertical connectivity of vegetation is an integral component of forest structure and includes both 
canopy and understorey structure. Understorey structure has major implication for stand 
regeneration and wildlife habitat selection. Several of the LiDAR metrics identified as useful in 
describing structural complexity (Section 2.1) can also be applied in the evaluation of vertical 
connectivity, including metrics derived from LiDAR height profiling based on a series of percentile 
heights and a suite of structural complexity metrics (see Appendix 2 for further information). LiDAR 
height profiling can directly quantify vertical foliage distribution, which includes the forest 
subcanopy elements. Listopad et al. (2015) argues that height profiles derived from high resolution 
LiDAR have a variety of ecological applications, including characterising successional stages and 
predicting species richness. 

Note, however, that the relationship between vertical profiles of LiDAR returns and vertical canopy 
profiles is complex and governed by factors like scan angle, leaf angle distribution, presence of non-
photosynthetic vegetation, foliar clumping and stand structure. Hence the preference of some 
researchers for working with Leaf Area Density (LAD) profiles (or Plant Area Density (PAD) profiles; 
Figure A1).   

The creation of LAD profiles is now a common approach to characterize the vertical distribution 
patterns of vegetation captured by ALS data (Bouvier et al. 2015). The LAD at a given height (z) is 
related to the ratio between the number returns below z and the total number of returns. The LAD 
values can be viewed as the decomposition of the Leaf Area Index (LAI) among the vertical strata so 
the LAI can be calculated as the LAD values obtained along the vertical profile. This standardized 
approach, however, is reliant on a uniform distribution of the LiDAR point cloud. De Almeida et al. 
(2020), for example, calculated LiDAR LAD profiles using 4 m3 voxels (2 x 2m horizontal resolution 
and 1m vertical resolution) using only 1st returns within 50 of scan nadir view angle. Fortunately, 
improving the homogeneity of point clouds can be achieved through various methods (see Appendix 
2). 
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Figure A1. Illustrating Plant Area Density (PAD) profiles of different forest management types, 
from Aalto et al. (2023) 

Jiang (2020) extracted height percentiles and the density of points within height classes to provide 
canopy profile models for a comparison of eucalypt forest structure in the Central Highlands of 
Victoria. The density of points was assumed to represent foliage density in different height strata 
and used to examine the connectivity between vertical layers. In another study, Jiang (in Stone & 
Hislop 2022) presented a new canopy profile model to characterize vertical structure. Instead of 
using gap fraction at given height (z), she directly used the projection coverage of point clouds to 
represent the foliage density for that height level (z), called foliage coverage profile. The projection 
coverage of points at given height (z) can be adjusted by the voxel size of point clouds.     

Using a voxel-based approach of dense Mobile Laser Scanning (MLS) data, Puletti et al. (2021) 
derived several LiDAR metrics to estimate vegetation presence or absence in four different forest 
strata ranging from 0.5m to 10m from the ground in order to characterise four spatial density and 
inhomogeneity of understorey forest structure at these four horizontal height classes. The acquired 
MLS point clouds were first normalized using the TLSNormalize function in the TreesLS R package 
(deConto et al. 2017).  From these results a Plant Vegetation Index (PVI) was then computed as the 
sum of vegetated voxels over their total number. The PVIs were then used to derive strata Plant 
Density Indices (PDI) at a broader scale following the defined understorey height classes. In a similar 
study mapping understorey vegetation in an Italian native forest, Ferrara et al. (2023) acquired MLS 
LiDAR data and used the TreeLS R package to voxelise and compute vegetation presence-absence 
and detailed vertical density profiles from which he aggregated into PDI values per strata forest floor 
(0.5–1m), shrubs (1–2m), lower understorey (2–5m), upper understorey (5–10m) and subcanopy (> 
10m).  
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Some authors (e.g., Ehbrecht et al. 2016) advocate for the value of a single descriptor of vertical 
structure as opposed to profiles describing foliage distribution. For example, the structural indicator 
Foliage Height Diversity (FHD), which is based on the Shannon diversity index but instead of species 
and their abundances, it uses foliage height profiles and the proportions of plant material in the 
profiles, i.e., 

 

Where pi is the proportion of total foliage, or LiDAR returns, in the vertical layer i. Alternatively it can 
be calculated as the proportion of the PAD in the ith vertical layer to the total PAD. To address some 
of the challenges with interpreting FHD, Ehbrecht et al. (2016) proposed an index called the Effective 
of Number of Layers (ENL) (Appendix 2).  

In addition, Listopad et al. (2015) also proposed two vertical structural indices based on a modified 
Shannon diversity index and modified Evenness index which describe vertical height diversity. When 
comparing forest stands with differing fire frequencies, they observed an increase in both indices 
with a decrease in fire frequency. 

Table A1. A list of LiDAR derived indicators which have been considered useful indicators for 
monitoring the vertical structure of forests. Details are provided in Appendix 2.   

LiDAR indicators 

Height profiles of height percentiles 

Height profiles of LAD/PAD (or LAI/PAI) 

SD & CoV of height percentiles 

SD & CoV of LAD/PAD vertical distributions  

Kurtosis & Skewness of height percentiles 

Kurtosis & Skewness LAD/PAD of vertical distributions  

Canopy Relief Ratio  

Foliage Height Diversity (= Height Evenness Index) 

Effective Number of Layers 

Fire fuel estimates 

Assessment of vertical connectivity is also an important of fire fuel load estimates. Hillman et al. 
(2021) used Remotely Piloted Airborne Systems (RPAS, also referred to as UAVs or drones) LiDAR 
point clouds acquired over a dry sclerophyll forest to relate the arrangement of fuel over the vertical 
profile to fuel properties in all strata. They also developed a method that identifies vegetation 
connectivity. They initially normalised the point cloud density using a 2cm binary voxel space 
indicating the presence or absence of vegetation before applying a vertical layer pouring algorithm. 
The vertical layer pouring algorithm was then used to identify the connection between different 
vegetation layers, which considers any element that is directly adjacent or overlapping with a higher 
strata layer to be a part of that layer. Each voxel is assigned a unique identifier depending on its 
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connectiveness to neighbouring voxels, both horizontally and vertically and the procedure is 
repeated from the top down. Each voxel is then assigned to a strata class based on the Victorian 
Overall Fuel Hazard Assessment Guide (OFHAG; Victorian Department of Sustainability & 
Environment, 2010) height thresholds. 

Application of Radar to estimate vertical structure 

While LiDAR allows for the characterization of vegetation structure in the vertical profile, the limited 
temporal availability of ALS data prevents its routine use for analysis of post disturbance recovery 
trajectories. On the other hand, satellite Synthetic Aperture Radar (SAR) backscatter data is readily 
available from several satellite platforms including Sentinel-1. Depending on the wavelength of the 
instrument, the SAR signal can penetrate and interact with forest canopy components to 
characterise forest structure.  

Fernandez-Guisuraga et al. (2022) monitored the vertical structural diversity (VSD, based on the 
proportion of vegetation cover in various height strata) within a fire-affected native forest in Spain. 
Through the fusion of C-band SAR data (from Sentinel-1) and multispectral data (from Sentinel-2), 
the authors modelled VSD using Random Forests. The best performing model accurately explained 
VSD in unburned control plots (R2 = 87 and RSME = 0.16) and burned plots 1 year after fire (R2 = 80 
and RMSE = 0.13). However, the authors acknowledged that for forests with higher canopy closure 
and biomass, the use of SAR sensors with longer wavelengths such as PALSAR-2 L-band onboard the 
ALOS-2 satellite would be able to better penetrate forest canopies.     

Application of GEDI to estimate vertical structure 

Finally, numerous studies have used data from the Global Ecosystem Dynamics Investigation (GEDI) 
instrument onboard the International Space Station (ISS) for assessing canopy height, profile metrics 
and biomass. An r package ‘rGEDI’ is now available for visualizating and processing GEDI Level1B, 
Level2A and Level2B data (Silva et al. 2021). Hirschmugl et al. (2023), for example, assessed vertical 
forest structure in the Austrian Alps using both ALS and GEDI data. They used the GEDI waveform 
data (L2B) (25 m) to derive Foliage Height Diversity (FHD) (Clawges et al. 2008) and the effective 
Number of Layers (ENL) (Ehbrecht et al. 2016) metrics. They concluded that while GEDI data are 
suitable for deriving vertical forest structure, there are limitations due to the limited resolution 
(each pulse sample has a footprint of ~25 m). They recommend that the full potential of GEDI 
waveform data for vertical forest structure assessments has not yet been realised.  

In another study evaluating GEDI data for estimating vertical connectivity in forests, Huettermann in 
Stone & Hislop (2022) utilised simulated GEDI observations to compare height characteristics 
between 3 classes of fire severity, one year after the 2019-20 wildfires in coastal NSW forests based 
on different Relative Height metrics. Examination of the Relative Height profiles indicated that initial 
recovery following the wildfire (i.e., the first few months) may have been more pronounced in the 
upper canopy, which was then followed by more regrowth in the lower and mid-stories as stand 
recovery progressed. 

1.2.  Dead tree crowns 

Standing dead trees have a unique ecological role, contributing directly to forest biodiversity 
through, for example, the provision of fauna habitat (Owens et al. 2014, Miltiadou et al. 
2018). Of particular interest is the location of habitat trees, including old, dying, or dead 
trees with hollows. Currently, it is not possible to use remote sensing to directly map tree 
hollows with confidence. However, partial success has been achieved using modelling 
approaches that model ‘probability’ of tree hollows. Direct detection can potentially be 
achieved with high-resolution LiDAR or cameras and advanced machine-learning modelling 
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approaches, but this research is in its infancy and requires further validation in eucalypt 
forests. 

 

Figure A2. Aerial photograph over a stand of dead and dying trees affected by Bell Miner 
Associated Dieback (Silver & Carnegie 2017) 

Aerial interpretation  

Traditionally, qualitative assessment of tree mortality has been achieved through aerial 
reconnaissance. This requires expert visual interpretation of forest canopy decline from the 
aircraft, often associated with sketch mapping of the extent of impacts. The sketches are 
then digitised and entered into a GIS (A. Carnegie, NSW DPI Forest Science, pers. comm.). A 
well-established alternative has been the manual interpretation (Aerial Photographic 
Interpretation; API) of imagery acquired by piloted aircraft. Trained interpreters can 
accurately identify and map individual dead tree crowns, however, this requires the 
expertise and specialist photogrammetric software and hardware. 

Mapping tree mortality using multispectral data  

Airborne digital multispectral imagery has been used to detect and classify canopy damage 
using machine learning approaches, including the detection of dead and dying trees in 
plantations or homogeneous native forests. For example, Windrim et al. (2020) 
demonstrated the benefits of combining multiple data formats based on airborne multi-
spectral photogrammetry, including photogrammetric point clouds and rasterised canopy 
height information, for detecting dead trees in a Pinus radiata plantation. 

Canopy dieback in native forests has also been mapped using spectral satellite imagery, with 
better results achieved with high spatial resolution data. Murfitt et al. (2016), for example, 
used the object-based software eCognition and a watershed crown delineation algorithm to 
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segment individual native ash tree crowns in WorldView-2 (4 band, 2 m) imagery before 
applying a series of vegetation indices to each segmented tree crown. 

It is possible to utilise lower spatial resolution satellite imagery to detect and map canopy 
dieback, but these datasets are often augmented with other sources of spatial information. 
For example, Haywood & Stone (2011) were successful in modelling and mapping dead and 
dying trees in areas affected by Bell Miner Associated Dieback (Figure A2), using predictors 
derived from 10m multispectral SPOT5 imagery and co-incident ALS data and topographic 
derived variables. The most influential predictor variables included an image textural 
statistic based on the SWIR band and the ALS derived Coefficient of Variation, Skewness, 
and the 10th and 90th height percentiles.     

Use of RPAS imagery to detect individual dead and dying trees  

Recently, Remotely Piloted Aircraft Systems (RPAS) have been evaluated for small-scale 
forest health assessments (Ecke et al. 2022, Estrada et al. 2023). Both aircraft and RPAS 
operate at much lower altitudes than satellites and so can provide very high spatial 
resolution (< 10 cm). This more easily permits tree level detection and segmentation to 
classify the health of individual tree crowns. This object-based approach reduces spectral 
noise from non-tree crown elements such as understorey vegetation. Importantly, very high 
resolution imagery acquired by RPAS or aircraft is now often used as a source of reference 
(training/calibration/validation) data for scaling up modelled parameters based on regional 
scale satellite imagery (e.g., Abdollahnejad et al. 2021). 

Significant advances have been made in the automatic detection and modelling of dead 
standing trees in high resolution imagery (Sylvain et al. 2019). The application of deep 
learning applications is revolutionizing object detection and classification in high resolution 
imagery (e.g., Zhao et al. 2023, Appendix 2). These deep learning approaches have proven 
to be more robust to occlusion and complex scenes than traditional machine learning 
modelling such as Random Forests.  

Jiang et al. (2023), for example, successfully applied a customised Faster-RCNN framework 
to detect dead standing trees in UAV imagery acquired over dense native forest in China, 
achieving an overall accuracy of 95.5%. In a similar study, Sani-Mohammed et al. (2022) 
applied a Mask R-CNN deep learning approach to 20 cm airborne imagery to locate standing 
dead trees in a dense native forest in Germany, achieving accuracy of over 85%. 

While deep learning models are improving our ability to automatically detect old, dying, and 
dead trees in complex forested scenes, they are very data ‘hungry’ and require a significant 
amount of image annotation to calibrate the models, which is labour intensive. Fortunately, 
there are now approaches to help with this process – for example, through leveraging of 
pre-trained deep learning models, data augmentation or the application of synthetic 
imagery (Grondin et al. 2022, Zhao et al. 2023). 

Application of LiDAR data to detect dead and dying trees 

In recent years, studies have evaluated the use of ALS data in relation to detecting dead or 
dying trees for applications such as the estimation of dead biomass, forest health 
assessment and wildlife habitat studies (Casas et al. 2016). However, due to irregular 
patterns and distribution of dead and dying trees, traditional area-based approaches often 
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result in inaccurate density estimates, therefore tree-based approaches have been 
preferred (Jutras-Perreault et al. 2023).  

Traditional tree crown delineation approaches such as local maxima filtering are often 
inaccurate due to the irregular tree shapes presented by dead standing trees (Miltiadou et 
al. 2018). However, the 3D information obtained from LiDAR has proven to be more 
successful. Miltiadou et al. (2020), for example, investigated the possibility of detecting 
dead eucalypt trees from voxelised LiDAR through the extraction of features from cylindrical 
3D windows using field data for training and the k-NN classifier.     

By comparing the tree-level plant area density profiles between foliage only (PADf) and stem 
only (PADs) point clouds, Ruizhu (in Stone & Hislop 2022) found that standing stag or dead-
top trees could be identified. For the PADs of stag trees, there is no clear height break in 
PADs but there is a clear height break in PADf. In addition, for stags, the total PAD above half 
the tree height is higher for the stem only than the foliage only. In contrast, for healthy live 
trees, the opposite behaviour is observed (Figure A3). 

 

 

Figure A3. Examples of tree-scale PAD profiles derived from FSCT segmented foliage only and stem 
only of dying trees in a coastal NSW forest (Jiang in Stone & Hislop 2022). 

In another study in New Zealand, Meiforth et al. (2020) investigated the use of pan-
sharpened WorldView-2 satellite imagery (1.8 m) and LiDAR data for detecting damage 
symptoms, individual kauri trees affected by the disease Pytophthora agathidicida. They 
concluded that notwithstanding issues related to misalignment between WV2 and the 
LiDAR, the combination of both datasets improved damaged crown detection compared to 
only WV2 attributes for all tested use cases. 

Owens et al. (2014) also evaluated the combination of multispectral aerial imagery and ALS 
data, in a study looking at detecting hollow bearing trees in eucalypt forests. They manually 
delineated individual tree crowns and applied maximum-likelihood classification on spectral 
values for classifying tree senescence levels while tree crown density estimates were 
obtained from a 10m height threshold ALS-derived CHM. This was because the strong 
correlation with hollow-bearing potential was the stage of tree senescence. Both the 
imagery and ALS demonstrated capabilities in separating mature trees into five senescence 
classes. 
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1.3.  Compositional complexity 

Forest composition refers to the different species of plants that make up a forest. As a gross 
generalization, we could say that greater composition complexity is desirable. However, this 
is site dependent and certainly weeds and non-native species are undesirable. 

NSW DPE continues to update its State Vegetation Type Mapping (SVTM). This program 
provides current maps of the three levels of vegetation classification hierarchy: Plant 
Community Type, Vegetation Class and Vegetation Formation. Another approach to 
mapping the composition of forests is focused on classifying the dominant canopy (i.e., the 
assemblages of mature trees) into principal forest types (Baur 1965). Based on the Baur’s 
description of forest types, aerial photo interpretation (API) has been used to map these 
tree assemblages across some NSW forests. A subsequent process has been used to classify 
the forest types into groupings called Yield Association Groups (YAGs). YAGs are defined by 
the tree canopy species mix, elevation above sea level, site wetness and canopy height of 
mature trees (A. Kathuria, Biometrician, NSW DPI, pers comm.). A report on the YAG 
classification across all forest tenures for the NSW north coast was made available on-line 
by NSW DPI in 2018. This modelling approach is currently being replicated for the NSW 
south coast. Another valuable source on tree species is the NSW BioNet Vegetation 
Information System.  For example, tree species records extracted from BioNet have been 
used for the predictive modelling of koala tree species, a key parameter for koala habitat 
information.   

Traditionally, the mapping of forest composition has been undertaken at the stand scale 
using stereo aerial photography and manual API. Skilled API operators can accurately map 
forest types, especially when presented with unclear boundaries. Unfortunately, at present 
in NSW, neither stereo aerial photography nor ALS data are supported by a systematic 
acquisition program.  

The application of satellite spectral data for mapping tree species over regional forests has 
been successfully demonstrated overseas. For example, Melnky et al. (2023) successfully 
developed classifiers of forest species using Sentinel-2 images in north-western Ukraine. 
Ferreira et al. (2019) used high resolution imagery acquired by WorldView-3 and applied an 
individual tree crown-based approach to classify large, distinct tree crowns in a tropical 
forest in south-eastern Brazil. They demonstrated that in addition to the spectral 
information, texture analysis of the panchromatic band was useful for distinguishing 
species-specific differences in crown structure.  

Closed-canopy, sclerophyll forests in eastern NSW are dominated by eucalypts, with the 
species within subgenus groupings being taxonomically and structurally very similar. Under 
these circumstances the mapping of eucalypt tree species is possible but requires very high 
spectral and spatial resolution data, in particular hyperspectral data. For example, Shang & 
Chisholm (2013) successfully applied airborne hyperspectral imagery and machine learning 
to classify seven eucalypt species in a native forest near Jervis Bay, achieving a classification 
accuracy of 94.7%. While not yet considered operationally feasible in Australia, recent 
studies overseas have achieved accurate tree species classification using hyperspectral data 
(Yel & Gormus 2023). 

In Germany, Shi et al. (2018) evaluated a large suite of LiDAR metrics derived from ALS data 
for mapping tree species. Interestingly they found that radiometric features such as return 
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intensity were more influential than the geometric features. They also suggested that a 
higher point density would provide more species-specific structural information. 

Several studies have also successfully classified tree species through the fusion of 
hyperspectral data and 3D data (either LiDAR or stereo photogrammetry) (Mäyra et al. 
2021) and the application of machine deep learning models (Sothe et al. 2020). Mäyra et al. 
(2021), for example, presented a workflow for tree species classification from high 
resolution hyperspectral and LiDAR imagery to produce accurate tree species maps. In 
particular, they demonstrated that the deep learning CNN models outperformed the 
traditional machine learning methods. Their best performing 3D-CNN model achieved an F1-
score of 0.86. 

Finally, in addition to the species identification and mapping of individual trees, several 
approaches have emerged to assess plant biodiversity more generically via remote sensing. 
One approach is often related to the Spectral Variability Hypothesis (SVH) (Fassnacht et al. 
2022). The general tenet of the SVH is that the biodiversity of a given area is positively 
related to the spectral variation of the same area. The R package ‘biodivMapR’, for example, 
is designed to compute a selection of α- and β-diversity indicators from optical imagery 
(airborne and satellite), based on the SVH (Feret & Boissieu 2019).  

It is now acknowledged, however, that the SVH does not hold true across all spatial scales 
and ecosystems. Seasonal phenotypic variation can challenge a stable link between spectral 
variation and biodiversity. Nevertheless, if repeatable, standardised spectral variation 
metrics are identified, it is a concept worth evaluating in Australian native forests. 

1.4.  Structural recovery 

Forest recovery is a process not a state, with the recovery of structure, composition and 
function manifesting gradually through successional stages following disturbance. The 
nature and rate of forest recovery can relate to several factors including the type and 
severity of disturbance and the inherent productivity of the site. Definitions of forest 
recovery often involve the use of terms such as regeneration and regrowth, including the re-
establishment of forest biomass and canopy structure (Bartels 2016). In an ecological or 
silvicultural context, this often implies the re-establishment of forests over time, and can be 
quantified by measurements of canopy cover, height, basal area, and stem density. 
Undertaking manual ground-based recovery measurements over large areas is not a feasible 
option, however time series analysis of multi-spectral satellite imagery provides a viable and 
cost-effective solution for capturing broad-scale observations of forest disturbance and 
recovery. 

Monitoring forest disturbance and recovery using satellite time series is now well 
established, with several time series change detection algorithms in existence. The 
algorithms attempt to examine individual pixels through time and use statistical techniques 
to extract changes and trends, including recovery from disturbance (e.g., Hermosilla et al. 
2015, White et al. 2017, Hislop et al. 2023). Several approaches have been developed 
including threshold-based change detection and trajectory segmentation. Threshold-based 
change detection requires a prerequisite threshold value to determine forest disturbances 
while trajectory-segmentation based approaches capture the trend based on information 
derived from the time series without the need for estimating thresholds. Two well 
established trajectory segmentation methods include LandTrendr (Kennedy et al. 2020) and 
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BFAST (Verbesselt et al. 2010). Both these algorithms distil often noisy time series into a 
simplified series of segments and provide a number of metrics that provide information on 
disturbance magnitude and regeneration (Banskota et al. 2014). 

Numerous spectral indices and metrics have been proposed for use in these time series 
methods, including for assessment of post-disturbance vegetation recovery. While 
greenness indices such as NDVI can characterize the initial pulse of vegetation recovery, 
these indices saturate rapidly. In contrast, indices using the shortwave infrared (SWIR) 
bands, such as NBR, are more strongly linked to vegetation structure and hence provide an 
indication of increasing forest structural complexity associated with regenerating stands 
(White et al. 2017). Note that most high spatial resolution satellites do not contain SWIR 
bands, which gives satellites such as Landsat and Sentinel an advantage in this respect. 

While spectral recovery is somewhat limited in its ability to represent structural recovery, 
studies have demonstrated it can act as a reasonable surrogate (White et al. 2019, 2022). 
White et al. (2019) characterized spectral trends using NBR and the Years to Recover (Y2R) 
metric to measure post-harvest forest recovery in southern Finland. The Y2R metric 
characterizes long-term forest regeneration and is defined as the number of years for a pixel 
to return to 80% of its pre-disturbance value. The authors found that the Y2R metric 
correlated strongly with forest structure and composition attributes measured in the field.   

As presented in Section 3.4, Hislop et al. (2023) analysed a monthly time series of Sentinel-2 
imagery to identify areas of eucalypt forest disturbed by drought and/or fire in NSW in 
2019-20. They identified areas of forest where the NBR was significantly below a pre-
disturbance ‘stable’ period. The stable period was defined as the 3 years prior to 2019 and 
the disturbance thresholds were based on bioregion specific number of standard deviations 
below the pre-disturbance mean (Figure 26, body of report). In both Hislop et al. (2023) and 
Gibson & Hislop (2022), it was shown that some NSW forest types could recover very quickly 
from fire and drought, especially after above average rainfall, while other forests recovered 
much more slowly (e.g., Alpine forests).   

Chirici et al (2020) also demonstrated that Landsat NBR spectral trajectories could be used 
to assess forest recovery after timber harvesting in an Italian native forest. They applied the 
LandTrendr algorithm and defined Y2R as the number of years required for a pixel to attain 
90% of its pre-disturbance fitted trend NBR value. 

As an alternative to using a pre-disturbance baseline, Gibson et al. (2022) presented a 
method that looks at the rate of change of a spectral index post disturbance (the ‘post-fire 
stability index’). Where the year-on-year change in the spectral signal is high, the forest is 
still considered to be recovering, whereas when the rate slows, the forest can be thought of 
as ‘recovered’. Outputs from this method are now presented as yearly operational products 
in NSW, alongside the Fire Severity and Extent Mapping (FESM). 

In addition to time series analysis using moderate spatial resolution imagery, Ireland et al. 
(2021) demonstrated the benefits of using higher spatial resolution imagery for monitoring 
targeted areas of forest recovery. They acquired imagery from Maxar’s WorldView-2 and 
WorldView3 satellites over a 3-year period (2m multispectral bands pan sharpened to 
0.5m). They reported that integrating spectral data with texture indices produced the best 
correlations with structural features like tree height and density.   
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Finally, to reiterate, spectral recovery as measured with a time series of optical satellite 
imagery is not a direct measure of forest recovery, whereas structural indicators of recovery 
such as height and density can be directly measured using ALS data. Bolton et al. (2015) 
recommended that using samples of ALS data is desirable to confirm the interpretation of 
spectral trends. 
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Appendix 2. Application of LiDAR data for assessing forest 
structure at the stand and tree level 

This review highlights recent advances in analysing LiDAR data acquired from a range of 
platforms and processed to derive information that contributes to the characterisation of 
native forest structure at the stand and tree level.  

2.1 Introduction 

Successful native forest management requires information on forest structure and 
composition. A variety of connections exist between structure and ecosystem traits 
including biodiversity, habitat, previous disturbance, successional trajectories, water 
interception, carbon storage and productivity (Moran et al. 2018). This includes the 
structure of canopies as well as sub-canopy structure which can encompass suppressed 
mature trees, regenerating tree saplings, and understorey shrubs and small trees, 
herbs/grasses and CWD.   

Forest structural elements have traditionally been assessed by manual field inventories. 
While tree stem measurements can reliably be obtained by field crew, estimates of 
plot/stand level attributes such as understorey density and cover, are often inaccurate, 
imprecise, and time-consuming. However, over the past 20 years, LiDAR systems, including 
LiDAR sensors on airborne (ALS), Remotely Piloted Airborne Systems (RPAS, also referred to 
as UAVs), mobile terrestrial (MLS) and static terrestrial (TLS) platforms, have been applied 
for the assessment of both stand-level and tree-level attributes.    

2.2 Approaches to working with dense point cloud data 

A key challenge of working with LiDAR data is that there often a large amount of spatial 
heterogeneity in the density of points over space and time. These density variations can 
directly impact on the of derived products (Petras et al. 2023). Point density variations arise 
from differing characteristics of the LiDAR sensor, observation geometry and vegetation 
properties.  LiDAR sensors are continuously improving in performance often resulting in 
higher pulse densities arising from changes to the sensor specifications such as laser power 
level and laser pulse repetition rate.  For example, the latest Emesent Hovermap unit, ST-X 
offers high density point clouds with improved range reaching to top of most forest 
canopies. However, in dense vegetation, issues with IMU drift still need to be addressed.  

During data acquisition the density of LiDAR point clouds relates to the distance from the 
LiDAR sensors which leads to a different average density of points at different positions. 
Variations in sensor height, scan angle and platform movement can also influence the 
density and uniformity of the point cloud (e.g., Petras et al. 2023).  Interestingly, van Lier et 
al. (2021) reported contrasting results with respect to the effect of ALS scan angle and 
specific ALS metrics and in fact the actual effects were more strongly influenced by specific 
forest structure. For example, occlusion from dense understorey has a major influence on 
LiDAR performance.  

The requirement to consider these differences is even more challenging when comparing 
datasets acquired by very different platforms. For example, the study presented by Stone & 
Hislop (2022) showed that ALS and MLS (Hovermap) point clouds acquired in native 
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eucalypt forest are complimentary, due to one system operating from above and one from 
below, however merging the datasets was not attempted.  

Point cloud co-registration is important for analysing multi-temporal data, especially for 
datasets acquired by different sensors and acquisition parameters. The use of ground 
control points (GCPs) is recommended.  Additionally, co-registration of multiple point cloud 
datasets can be undertaken in a semi-automatic approach using the open-source software 
CloudCompare. It is also possible to align spatially co-incident LiDAR point clouds acquired 
by different platforms using the iterative closest point (ICP) algorithm which can be 
accessed in the software CloudCompare (Besl & McKay, 1992, Lee et al., 2022, Arkin et al., 
2023).  

There are, however, several approaches aimed at homogenization of the point densities and 
harmonizing point densities across a time series or spatially adjacent datasets. One 
approach is decimation which is a reduction in the number of points in a point cloud that 
preserves selected properties of the point cloud (Petras et al. 2023).   

Another common approach aimed at homogenization of the point density is the application 
of voxels (=3D rasters, also referred to as binning) (Mathes et al. 2023).  

2.3  Using voxels 

LiDAR point clouds can be processed using area-based (pixels) approaches, (e.g., Canopy 
Height Model), voxel-based approaches or object-based approaches (Figure A4) (Bakx et al. 
2019).  

 

Figure A4. LiDAR point clouds can be processed using area-based approaches (i.e., rasterization 
into grid cell, voxel-based approaches (i.e., voxelization into 3-D voxels) or object-based 
approaches (e.g., segmentation into objects such as trees (from Bakx et al. 2019)    

Voxels are commonly applied to reduce data density, as well as filtering the returns by 
selecting only the first or last returns. It is also possible to reduce point density through a 
decimate (thinning) function.  Voxelization can also help address of occlusion. Mathes et al. 
(2023) concluded that voxelization of point clouds prior to the extraction of stand or tree 
measurements with a voxel size of a least 20cm was appropriate to reduce occlusion effects 
while still providing a high level of detail. Voxels are applied in the derivation of a large suite 
of LiDAR metrics. These voxel-based metrics are based on summarizing the LiDAR points 
that fall within each voxel and are directly influenced by the chosen voxel dimensions. 
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2.4 LiDAR metrics  

Quantifying forest canopy structure as it varies in space and time requires metrics that 
capture both horizontal and vertical complexity. LiDAR-derived metrics are now 
recommended for the assessment of forest structure within multi-value forest management 
monitoring programs (Moudry et al. 2023). Vogeler et al. (2014), for example, demonstrated 
the relative importance of including LiDAR-derived metrics of vertical and horizontal 
structure in predicting bird species richness in two mixed conifer forests in Idaho, USA.  

Numerous metrics have now been developed and applied to describe forest structure. 
These metrics can be categorised as being related to canopy cover, canopy height, height 
and density profiles and compound structural metrics (e.g., Figure A5).  In general, relative 
measures of vegetation density or cover, where the number of returns in a vertical stratum 
are scaled to some measure of sampling density provide better estimates of both canopy 
and understorey vegetation than absolute values.   

Below is a description of some of the LiDAR metrics that have been applied to characterise 
forest structure. They have been grouped into four categories: Canopy/stratum cover; 
Canopy height; Height and density profile metrics and stand structural complexity metrics.  

Canopy/Stratum cover (or closure) metrics 

Percentage canopy cover can be calculated based on the height (e.g., full profile or canopy 
stratum) and type of return for a specified ground cell size. For example, as the number of 
1st returns above a certain height threshold (e.g., 2m) divided by all (or only 1st) returns x 
100. Similarly, an understorey ratio is the total returns below a specified height threshold, 
that are not classified as ground, divided by all returns, including ground returns. Of note, 
van Lier et al. (2021) report that that these 2 metrics become unstable with increasing ALS 
scan angles. 

Canopy height metrics 

Common LiDAR height metrics include the canopy top height (=the 95th percentile height of 
1st returns) and average canopy height (= average height of 1st returns). The 95th percentile 
height measurement is the height at which 95% of LiDAR returns fall below for each 
specified ground cell and is less sensitive to anomalously high points. 

 

Figure A5. Illustration of some of the structural elements of forests that can be derived from LiDAR 
point cloud data (from Moudry et al. 2023). 
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Height and density vertical profile metrics 

Canopy vertical profiles are curves of forest structural components as a function of height 
above ground and are considered important descriptors of forest structure.  For example, 
vertical canopy strata density can be calculated as the % of LiDAR points between two 
heights, for example % of all returns between heights 5 – 10m.    

Other height profile metrics  

The Canopy Relief Ratio: This metric is the ratio of the difference between the mean 
and the minimum of LiDAR heights intersecting plot over the difference between the 
maximum and the minimum of LiDAR heights intersecting the plot (Gelabert et al. 2020).  It 
describes the degree to which canopy surfaces are in the upper (> 0.5) or in the lower (< 0.5) 
portions of the height range (Torresan et al. 2016). Low values reflect canopy surfaces that 
are characterized by isolated relief features standing above extensive level surfaces, 
whereas higher values describe broad, somewhat level surfaces broken by occasional 
depressions.  Karna et al. (2020) observed changes in the canopy relief ratio and rumple 
index (described below) consistent with a dominant stratum becoming more heterogeneous 
and fragmented after a severe fire in a native forest in the Central Highlands of south-
eastern Victoria. 

Weibull fitting approach: Several authors have applied distribution models to 
represent the vertical profile of vegetation structure in LiDAR data, such as the Weibull 
distribution function (Zhang et al. 2017).  Distribution functions provide a mechanism to 
summarise complex canopy attributes into a short list of parameters that can be empirically 
analysed against stand characteristics.  Jaskierniak et al. (2011) applied mixture models 
having a range of distribution functions to LiDAR height distributions to estimate plot level 
stand characteristics such as basal area and stand volume. Wilkes et al. (2016) proposed a 
mathematical approach that did not require some initial a priori knowledge. They applied 
vertically resolved gap probability that was aggregated over a plot that had been 
generalized with a nonparametric cubic spline regression for identifying the number of 
strata in within the height profile of native eucalypt forests.  

Density profile metrics 

Forest structure also directly relates to vertical dynamics of leaf density including tree 
canopy density metrics such as foliage projective cover (FPC) which is the proportion of 
horizontal area covered by the vertical projection of photosynthetic foliage for all 
vegetation taller than 2 m. FPC is closely related to Leaf Area Index (LAI) but can differ due 
to foliage clumping and leaf orientation. Fisher et al. (2020) using ALS data acquired over 
multiple Australian forests and woodlands and identified two ALS data metrics suitable for 
estimating FPC and the crown projective cover (CFC).    

Another two ecologically important forest structural attributes that can be derived from 
LiDAR data include plant (or leaf) area index (PAI, LAI) (m2/m2) and plant (or leaf) density 
index (PAD, LAD) (m2/m3).  The PAI and PAD consist of both woody and leaf materials while 
the LAI and LDI comprises only the foliar components. In general, it is more difficult to 
distinguish between leaf and woody components from ALS compared to TLS and MLS data 
(but refer to discussion below on new deep learning segmentation models).  These two 
LiDAR derived attributes are now commonly used to characterize the vertical heterogeneity 
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of forest stands and have related to other aspects of forests.  Carrasco et al. (2019), for 
example, demonstrated that ALS metrics based on LAD measurements had better 
explanatory power (43% of variance explained) than those based on the variation of canopy 
heights (32% of variance explained) when modelling bird species richness in native forests in 
northeast USA.   

LAD profiles provide detailed information of forest canopy, subcanopy elements and 
individual trees. The leaf area density (LAD) metric estimates total leaf area per unit volume 
and requires the sampled space to be divided into voxels with a specified height (Δz) 
(Carrasco et al. 2019, de Almeida et al. 2019). The LAD is in fact the decomposition of the 
LAI among the vertical strata of the forest canopy.   

The method commonly presented for deriving LAD profiles, commences with the first-return 
point cloud binned into voxels and the number of first returns within each voxel calculated. 
A vertical resolution of 1m is recommended to maximize the potential to derive vertical 
forest structure information (de Almeida et al. 2019). The MacArthur and Horn method 
relates the gap fraction (GF) to LAD (or LAI) and is applied to the voxelised columns of LiDAR 
returns (Kamoske et al. 2019).  The GF is estimated by counting the number of returns 
above and below the target voxel i in a vertical column.   

GFi= -(Nbe/(Ntot Nab) and LAD for the voxel I = LADi = -(ln(GFi)/k Δz 

where Nab=number of LiDAR returns above the voxel, Nbe = number of returns below the 
voxel, Ntot = the total number of returns in the vertical column; k= coefficient of extinction 
(or sometimes referred to as the Beer-Lambert coefficient) and can vary between 0.28 to 
0.67, and is often approximated as 0.5. (Carrasco et al. 2019, Kamoske et al. 2019, Roussel 
et al. 2020).  

A value of 0.5 for k is commonly used in closed-canopy forest ecosystems (Kamoske et al. 
2019). If k= 1 then it contributes to the estimation of ‘effective LAD’ (and ‘effective LAI’). 
Occluded voxels are treated as no-data (where pulses out = 0 or pulses in = 0) and are not 
considered when calculating the mean LAD of a stratum (de Almeida et al. 2019).  For the 
method presented by Kamoske et al. (2019), if there is not a ground return present, a NA 
value is assigned, and this column is not used in used in subsequent analysis. They conclude 
with the sum of LAD values in a column of voxels with a ground return is equal to the LAI of 
that vertical column. Values of strata LAD (or PAD) can then be compared over time by 
calculating the normalized Z-scores on a per pixel basis.  

Importantly, these profile metrics can be estimated from ALS point clouds with R packages 
available on Github: akamoske/canopyLazR and DRAAlmeida/leafR (Table A2).  

A salient assumption when deriving LAD profiles is that the ALS is acquired at a narrow off-
nadir view angle and so each LiDAR pulse is vertically incident in order to calculate the 
pulses entering the tops of voxels and the pulses leaving the bottoms of voxels. When 
operating an MLS, it needs to maintain a vertical upward aim. All entering pulses not 
detected as returns from a voxel are assumed to pass through and enter the next voxel in a 
column. However, when appropriately calibrated with vegetation coefficients for a given 
LiDAR pulse density and for a particular grid size, LAD can provide reliable measurements of 
plant densities for all layers of the canopy.  

De Almeida et al. (2019) evaluated the effects of LiDAR pulse density and horizontal grain 
(sampling) size of voxels on the estimation of LAD profiles and their associated LAIs over 
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tropical rainforest with destructive sampling, ground based LiDAR and ALS data. They 
reported that LAD profiles from ALS were concordant with destructive field sampling and 
MLS data when grain size < 10 m and pulse density > 15 pulses m-2.  

Other density related LiDAR metrics 

Normalized relative point density: Another stratum-based density metric, also 
referred to as the normalized relative point density (NRD), was shown by Campbell et al. 
(2018) to be able to characterize understorey density.  NRD characterizes point density as 
compared only to the number of points within a given height range and below.  

Foliage Coverage Profile: To improve the accuracy of vertical profiles obtained from 
MLS datasets, Jiang in Stone & Hislop (2022), applied a new canopy profile model called the 
Foliage Coverage Profile to characterise the vertical structure. Instead of using Gap fraction 
at a given height (z), her approach used the projection coverage of point clouds to represent 
the foliage density for the height level (z), based on 10cm voxels. This is achieved by 
projecting the 3D points onto a 2D plane and then measuring the area covered by these 
projections. For a 10cm voxel, then each point represents a 10cm cube. At a given height (z), 
all point clouds within the vertical range between z and z+1 are considered. 

Canopy rugosity:  This metric represents the horizontal and vertical variance of leaf 
(or plant) density throughout the canopy (Atkins et al. 2018). It can be estimated using the R 
packages canopyLazR and Forestr (Table A2). 

Clumping index:  This metric is calculated as the effective Leaf Area Index over Leaf 
Area Index. It is considered a key variable for describing clumped spatial patterns within a 
canopy, with 1 indicating completely random distribution of crown returns down the profile 
or canopy stratum, and 0 indicating a high degree of aggregation. It could be assumed that 
the presence of epicormic foliage after a fire in native eucalypt forests would result in 
increasing values of this Clumping Index (Karna et al. 2020).        

Stand structural complexity metrics 

Numerous metrics have been derived that provide information related to the 3D structure 
of all strata present in a forest stand. The inclusion of height-based, cover-based and these 
compound structural metrics into predictive models of forest attributes such as habitat 
suitability have now been demonstrated. For example, in addition to the calculation of ALS 
metrics that describe forest height, height variability and cover, Jarron et al. (2020) also 
included more complex LiDAR metrics related to stand structural complexity into a 
regression model that classified sub-canopy components. Included for consideration in their 
modelling were the vertical complexity index (van Ewijk et al. 2011) and the vertical rumple 
index (Tompalski et al. 2015). Below is a brief description of some LiDAR-derived compound 
structural metrics that have been developed. 

Skewness (asymmetry of distribution) & Kurtosis (peakedness of distribution): 
Metrics derived from height profiles such as skewness and kurtosis are commonly estimated 
for evaluating forest stand structure. Haywood & Stone (2011a) interpreted that positive 
skewness values were associated with sparse canopies and negative values with closed 
canopies when using ALS data to estimate structural attributes of mountain ash (Eucalyptus 
regnans) forests in Victoria.  Bolton et al. (2015) applied ALS skewness and kurtosis to 
monitor forest recovery following wildfire disturbance in the western boreal region of 
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Canada. They reported that the presence of a few tall trees among a stand dominated by 
shorter, regenerating trees would have a positively skewed distribution. Alternatively, a 
dense, regenerating stand at a uniform height would display high kurtosis while a stand of 
trees with a mixed range of heights would have lower kurtosis.     

Standard variation (SD) and Coefficient of variation (CV) of LAD/PAD (or LAI/PAI): 
where CVLAD is the ratio of standard deviation of the LAD from the canopy profile over the 
LAD mean, with values between 0 and 1. The CoV indicates variability in the density 
distribution or volumetric packing of canopy components down the full canopy profile or 
canopy stratum per unit area (Karna et al. 2020). Lower values of CoVLAD indicating less 
variability and greater evenness of density. For the standard deviation, small values arise 
from areas with homogenous vegetation, while high values reflect vertically heterogeneous 
vegetation (Moudry et al. (2022).  

Rumple Index: This is the ratio of the three-dimensional canopy surface area to its 
projected ground area using all 1st returns per LiDAR plot. Provides an indication of vertical 
and horizontal variation in canopy structure that increases with roughness of the canopy 
surface and with structural heterogeneity (Kane et al. 2010, Roussel & Auty 2018). 

Vertical Rumple Index:  The vertical Rumple Index is based on the same principle as 
the Rumple Index however, it measures the complexity of the vertical structure of the 
stand, not the top of the canopy. Formula presented in Tompalski et al. (2015)   

Vertical complexity index: This index describes the evenness of the vertical 
distribution of the points across the canopy layers (van Ewijk et al. 2011, Pearse et al. 2018). 
The VCI has a range of 0 – 1 where VCI = 0 signifies an even distribution of points across the 
canopy height and decreasing values state an increasingly uneven distribution.  Jarron et al. 
(2020) calculated the VCI as the distribution of abundance of returns in 1 m height voxels. 

Effective mean number of layers (ENL):  This index describes the vertical structure 
based on the occupation of different vertical layers in relation to total space occupation of a 
stand. The point cloud is divided into different voxel layers and then each voxel layer is 
assessed based on the presence of points within them (Ehbrecht et al. 2016). For the ENL, 
increasing stand height and a more even occupation along the vertical profile result in 
higher values. 

Foliage Height Diversity (FHD) (=Height Evenness index): This is a modified Shannon-
Weiner diversity index (H’) which is estimated from H = -SUM [(pi) * ln(pi)], where pi is the 
proportion of the total LiDAR returns that fall within a given height voxel. It is a measure of 
the vertical complexity of the canopy that describes how evenly the canopy is vertically 
distributed.  Values close to 1 indicate completely even distribution of returns down the 
height profile (Clawges et al. 2008, Listopad et al. 2015).  Using ALS data acquired over a 
Swiss native forest, Froideveaux et al. (2016) used the FHD to describe the degree of scatter 
of vegetation elements along the vertical forest profile. Of note is that both FHD and ENL 
metrics at 25m resolution can be derived from the L2B data acquired by the GEDI LiDAR 
sensor on board the International Space Station (e.g., Hirschmugl et al. 2023).  

FCNSW Forest Structure Index: The Forestry Corporation of NSW has developed an 
in-house ‘forest structure index’ which resamples a 1m CHM to produce a surface 
representing canopy volume across a broader landscape. They have shown that this index in 
turn, can relate to sawlog grade volumes (T. Brown, pers. comm., FCNSW).   
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Table A2. List of software programs available for extracting forest structural metrics from LiDAR 
data  

Package Functions Reference 

lidR (R) For ALS data manipulation and visualisation, e.g. 

• Computing canopy height models 

• Individual tree segmentation (raster-based 
watershed methods and from point cloud data) 

Roussel et al. 
(2020) 

forestr (R) Deriving canopy structural metrics from ALS & MLS LiDAR 
data. e.g. 

• Leaf area index (LAD) 

• Rugosity 

• Rumple 

• Effective number of layers 

Aikens et al. 
(2018) 

leafR (R) Estimates LAD and LAI from ALS data De Almeida et 
al. (2019) 

canopyLazR 
(R) 

Estimates leaf area density (LAD) and leaf area index (LAI) Kamoske et al. 
2019) 

TreesLS (R) 
 

Uses dense point cloud data for automated tree stem 
detection and tree inventory parameters 

  

De Conto et al. 
(2017 & 2019) 

TREETOP (R) Has functions that smooth, detect and delineate individual 
trees on a LiDAR-derived CHM and compute LiDAR metrics 
at plot and crown scales (Archived by CRAN but available in 
GitHub carlos-alberto-silva/rLiDAR 

Silva et al. 
(2021) 

FUSION/LDV Open-source program for visualizing and analysis of LiDAR 
data including a function for watershed crown delineation 

McGaughey 
(2021) 

LAStools Efficient tools for LiDAR processing Isenburg (2013) 

2.5 Use of high-resolution spatial data for stand and tree-level 
detection, segmentation and classification 

The high density, point clouds acquired by LiDAR sensors and cameras attached to ground-
based platforms, RPAS platforms and high-resolution systems on aircraft are suitable for 
object-based image analysis, in particular, the segmentation and characterization of 
individual tree stems which are then can be included in forest inventories (e.g., Hyyppä et 
al. 2020, Iqbal et al. (2021).   
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Individual tree detection (ITD) methods using LiDAR data can be grouped into two major 
types based on the input data they use: raster-based and point-cloud based. Raster-based 
ITD methods rely on gridded data, that provide summary information extracted from ALS 
points, such as minimum and maximum height of all returns within a cell. Point-cloud-based 
approaches identify individual trees using a variety of methods that take advantage of tree 
crown shape and spacing, and vertical and horizontal return density changes in the ALS 
point cloud (Sparks et al. 2022).   

In addition, many of the LiDAR metrics mentioned above, that relate to the horizontal and 
vertical structure of forests at the stand level can also be applied to individual trees having 
been identified through tree crown segmentation. Karna et al. 2019, for example, calculated 
LiDAR metrics such as LAD profiles and the Height Evenness Index for individual trees.  

Tree crown segmentation 

As mentioned, a large array of methods has been developed for tree crown detection and 
delineation (Ke & Quackenbush 2011). For raster canopy surfaces (e.g., the CHM) this 
commonly includes applying a local maxima filter within a user-defined search window, 
followed by a region-growing algorithm to delineate tree crowns packaged as an algorithm 
such as the marker-control watershed tree delineation algorithm. This methodology has 
yielded favourable results for regular crown shapes (e.g., Chen et al. 2004).  However, 
accuracies in tree crown segmentation can be improved when based on the point-cloud 
data rather than a pixel CHM (Iqbal et al. 2021).  Both these approaches, however, are 
challenged with the presence of suppressed or young trees overtopped by dominant, 
mature trees. Several of these ITD methods have now been incorporated into open-source 
software including the R packages LidR and TREETOP, and the open source LiDAR processing 
and visualization software FUSION/LDV (Roussel et al. 2020, McGaughey 2021, Silva et al. 
2021 (Table 11). 

More recently, the introduction of data-driven, deep learning neural networks (a subclass of 
machine learning) has greatly enhanced the performance of remote sensing solutions for 
detecting and classifying objects in geospatial images.  This includes the application of deep 
learning models to both high resolution 2D and 3D datasets for detecting, segmenting, and 
classifying individual tree crowns.  These deep learning models use a series of hierarchical 
layers to learn directly from training data instead of using expert designed features (e.g., 
Weinstein et al. 2020).  Numerous studies have demonstrated that they can have superior 
performance to traditional machine learning methods such as RandomForest or SVM, 
including the detection and delineation of tree crowns using wither 2D and 3D high 
resolution data (e.g., Straker, et al. 2023). 

Unlike traditional ITC algorithms, these deep learning models do not rely on a-priori 
knowledge of the spatial distribution or crown size to parameterize the initial local maxima 
search. For 2D images such as a LiDAR CHM or multi-spectral imagery, CNN frameworks can 
be applied as either two-stage detectors (e.g., region-based convolutional neural networks) 
or one-stage detectors (e.g., You Only Look Once, YOLO). Straker et al. (2023) claim that 
deep learning models are highly adaptive and allow for the detection of trees independently 
of their spatial distribution and size. Hao et al. (2021), for example, included a NDVI-CHM 
combination into their Mask R-CNN workflow aimed at delineating tree-crowns and 
estimating associated heights of Chinese fir trees using UAV multispectral imagery.  They 
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achieved an IoU = 91.3% for tree crown delineation and a R2 = 0.87 for tree height 
assessment. In another study, applying Mask R-CNN to delineate tree crowns in a Brazilian 
forest, Braga et al. (2020) used WorldView-2 satellite imagery with 0.5m spatial resolution. 
They reported an average bounding box precision of 91% and a recall of 81%.    

Tree stem segmentation 

With the application of LiDAR Simultaneous Localization and Mapping (SLAM) technology, 
the detection and segmentation of individual tree stems in stands with dense canopy cover 
has rapidly advanced (Tang et al. 2015, Zhao et al. 2023). Accompanying the acquisition of 
dense point cloud data has been the automated processing techniques for determining 
stem points and measuring stem parameters.  This has included circle-fitting algorithms 
such as the Hough Transform and RANdom SAmple Consensus (RANSAC) (Olofsson et al. 
2014). The RANSAC algorithm assumes that points belonging to the same stem appear in 
the point cloud as arcs. It iteratively fits horizontal circles to a given set of points and 
chooses the best fit.  These arcs and circles are then vertically aggregated to build the tree 
stems (de Paula Pires et al. 2022).  

The R package ‘TreesLS v2.0’ has functions for both stem detection and segmentation (de 
Conto et al. 2019) based on the Hough Transform algorithm.  For example, using LiDAR 
acquired by a GeoSLAM Zeb-Horizon in a Türkiye national park, Vatandaslar et al. (2023) 
processed their data in used the r packages lidR and TreesLS to detect and segment tree 
stems and they found no significant differences between inventory attributes obtained by 
conventional manual methods and the MLS-derived estimates, although estimation errors 
increased with stand dominated by smaller trees or dense understorey.   

Another approach to the automatic segmentation of tree stems and branches based on 
dense point cloud data involves the application of Quantitative Structural Models (QSMs) 
(Raumonen et al. 2013). Although effective in many situations, both the circle-fitting 
algorithms and QSMs require significant effort in parameter tuning when applying the data 
across varying resolutions and forest types (Bryson et al. 2023).  

However, supervised, deep learning models are becoming increasingly popular in the 
analysis of dense (3D) point clouds for segmenting and classifying 3D objects (e.g., Zhang et 
al. 2019). Semantic segmentation treats multiple objects within a single category as one 
entity whereas instance segmentation identifies individual objects within these categories. 
Numerous recent studies now present deep learning models that can automatically classify 
nontree points and segment points classified as trees or common elements such as 
separating tree foliage from tree woody biomass within a forest stand (referred to as 
semantic segmentation) and/or their respective individual structures, condition or 
composition (referred to as instance segmentation) from dense LiDAR and photogrammetric 
point clouds (e.g., Chang et al. 2022, Windrim & Bryson 2020, Figure A6).   
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Figure A6. Illustrating semantic and instance segmentation of structures in a forest stand (Wilkes 
et al. 2023)  

Recently, whole-tree segmentation workflows have been developed and provided as open-
source software that present a two-stage pipeline for estimating tree inventory (e.g., 
Krisanski et al. 2021a & 2021b, Wilkes et al. 2023, Wielgosz et al. 2023). Krisanski et al. 
(2021a & 2021b) published a fully automated forest point cloud software program called 
the Forest Structural Complexity Tool (FSCT) aimed at extracting tree structural information 
from TLS, MLS and high-resolution ALS (https://github.com/SKrisanski/FSCT). This program 
is based upon the deep learning model Pointnet++ to semantically segment forest point 
clouds into four categories: terrain, vegetation, coarse woody debris and stems.  Once 
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semantically segmented, the terrain, CWD and vegetation classes can be ignored when 
segmenting individual tree stems.  The second phase of this workflow segments and 
quantifies individual tree stems (instance segmentation) using a hierarchical density-based 
spatial clustering algorithm before fitting a cylinder-orientated function to detect ‘skeleton’ 
stems and branches which are then aggregated.  A similar tree level segmentation approach 
has also been achieved by Wilkes et al. (2023) through their open-source workflow 
TLS2trees.  Tree attributes such as stem diameter, sweep and branching can then be 
automatically extracted. Wielgosz et al. (2023) improve the performance of the second 
phase, instance segmentation through optimizing the set of hyperparameters for different 
forest types. They present an automated approach based on a Bayesian strategy.     

In a recent FWPA-funded study R. Jiang (in Stone & Hislop 2022), developed a method 
aimed at improving the accuracy of native forest tree height estimates derived from MLS 
Hovermap data through the application of FSCT based on tree-level-PAD profiles and was 
able to classify trees as either occurring in the canopy, sub canopy or as dead trees (stags) 
or those that had a significant dieback crown (dead top). This new workflow involved 
building separate tree-level PAD profiles for three categories (1) foliage only, (2) stem only 
and (3) foliage + stem. The plant area density at a given height (z) was estimated using the 
projection coverage of point clouds at that height level. Based on changes of PAD by height 
it was possible to identify height breaks that distinguished between upper and lower leaf 
density strata. Importantly, the application of this approach using dense ALS data could 
potentially improve the detection of dead and dying trees at both the site and landscape 
scale.  

However, there are challenges to operationally implementing these workflows including 
lack of technical expertise, lack of large amounts of training data and the need for significant 
computational resources. For reference training data applied for the semantic and instance 
tree segmentation workflow, points are often just manually annotated in the software 
package, CloudCompare (e.g., Wilkes et al. 2021).  However, several approaches such as 
synthetic data augmentation (e.g., Bryson et al. 2023, Perez-Carrasco et al. 2023) and 
transfer learning which fine-tunes a pre-trained model (e.g., Weinstein et al. 2020) are now 
being applied to reduce these impediments. In addition, several automated software 
programs have become available (e.g., Weinstein et al. 2020 - DeepForest open-source 
Python package for delineating tree crowns in RGB imagery, 
https://github.com/weecology/DeepForest or PyCrown for individual tree crown 
segmentation for LiDAR data) while Puliti et al. (2023) have developed an open source, 
benchmark dataset for semantic and instance segmentation of individual trees from dense 
airborne LiDAR data.    

Adapting and improving these packages specifically for NSW native forests would 
significantly improve both the accuracy and efficiency of both ground-based and dense ALS 
LiDAR data collection compared to current manual methods.  As with all supervised deep 
learning models, they require large training datasets and significant computing capacity, 
hence are likely only to be applied as area- or tree-based samples for supporting inference 
modelling with satellite data covering a much larger area of interest.     

 

https://github.com/weecology/DeepForest


 

 

  68 

 

 

2.6 Application of smart phone LiDAR and camera sensors 

Very recently, applications have been written for LiDAR-equipped mobile phones designed 
for tree stem detection and DBH estimates. Holcomb et al. 2023, for example, using an 
approach of raw depth imaging (i.e., stereo, dense image matching) that integrates stereo 
photogrammetry with the LiDAR data. Bobrowski et al. (2023) tested the LiDAR sensor in the 
iPad Pro 2020 which has been integrated high resolution cameras and a precise inertial 
measurement unit.   Their results indicated that selected stems should be > 10 cm and 
distances < 2.0m from the stem is recommended. In addition, as with other LiDAR sensors, 
rough bark and irregular stem shapes also increased errors.   

Interestingly, Zhao, et al. (2023) mentions that very recent published research shows one-
stage models have started to overtake two-stage models in some computer vision tasks. Cao 
et al. (2023) for example, successfully applied modified YOLO v7 algorithm, within the deep 
learning framework PyTorch, to photos of trees located in varied and complex environments 
acquired by a Xiaomi smart phone. In this study YOLO v7 outperformed five other deep 
learning models.       

In addition, the Swedish company Katam Technologies now provides a service that analyses 
data acquired by either sub-canopy UAVs or hand-held smart phones to provide 
measurements of tree stem diameters. While these phone applications have been shown to 
accurately estimate tree stem diameters, the sensors have a short range of only 3 – 5m.  

2.7 Virtual Reality  

Finally, current research is being undertaken to incorporate tree segmented MLS point 
clouds into a virtual reality (VR) environment for visual and on-screen measurements 
associated with tree inventory in native eucalypt forests (W. Chinthammit, University of 
Tasmania, & M. Bryson, University of Sydney, pers comm.). While this approach has been 
successfully achieved for plantations (D. Herries, Interpine Innovation NZ, pers. comm.) 
application in native forests is more challenging with increased densities of trees having 
irregular stem features and the presence of dense understorey vegetation. Preliminary 
analysis of Hovermap derived point cloud data collected in dense native eucalypt forest 
resulted in the successful detection of tree stems and estimation of DBH. It is hoped that 
this research will progress the accuracy and the operational adoption of MLS instruments 
such as the Hovermap for inventory assessment of monitoring plots in native forests. 
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